首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparison of the results of catalytic and electrocatalytic oxidation of aniline using VS-1 in the presence of H2O2 and TBHP indicates remarkable differences in conversion and selectivity. VS-1 catalyzes the oxidation of aniline selectively to nitrobenzene (73%) in the presence oft-butyl hydroperoxide (TBHP), while azoxybenzene (95.2%) is formed selectively when H2O2 is used. Cyclic voltammetric studies show a three-step oxidation of aniline to nitrobenzene in H2O2 but in the presence of TBHP only one step is observed. Electrocatalytic oxidation of aniline to nitrobenzene occurs at a potential 700 mV less than that corresponding to H2O2 as oxidant along with a selectivity of 91.8%. The enhancement of electrocatalytic rate is attributed to the stabilization of electron deficient transition state.  相似文献   

2.
Because of the large quantity of liquid crystal displays (LCDs) in use, the volume of waste LCDs is ever-increasing, causing growing concern about their effective treatment. Polarizers are among the most important functional films used in LCDs and are mainly treated by incineration after being discarded. In this study, they were used to produce acetic acid under the hydrothermal conditions; this could aid development of a new environmentally sustainable process for treatment of waste polarizers. The experiment was performed in a 5.7-ml bath reactor heated by use of a salt-bath. The liquid product was analyzed by high-performance liquid chromatography. The effect of reaction temperature, reaction time, and oxidant on acetic acid production was investigated. Results showed that the yield and selectivity for acetic acid initially increased with increasing reaction temperature, reaction time, and H2O2 supply but then decreased within the ranges of the experiments performed. The highest acetic acid yield of 33.4 %, with selectivity of 26.7 % based on carbon, was obtained by hydrothermal treatment of waste polarizer at 350 °C for 5 min with 0.6 ml H2O2.  相似文献   

3.
A new efficient heterogeneous catalyst was introduced for the epoxidation of styrene. The catalyst was obtained from deposition of gold nanoparticles on the cellulose aerogel. The catalyst was characterized with XRD, TGA, EDX, BET, FAAS and SEM. High yield and excellent selectivity were achieved for the epoxidation of styrene in solvent-free conditions at room temperature using H2O2 as a green oxidant during 1 h. The reaction has some advantages such as solvent-free and mild reaction conditions, low catalyst loading, high yield, excellent selectivity, green oxidant and short reaction duration. In addition, the catalyst is recyclable and applicable for six times without decrease in yield.  相似文献   

4.
The hydroxylation of benzene and phenol with in-situ-generated oxidant was performed under mild reaction conditions over the bicatalytic system which has dual abilities of direct H2O2 generation and the hydroxylation activity by combining Pd-zeolite with redox zeolites such as TS-1, Ti-MCM-41, V-MCM-41 and Fe-zeolite. The amount of H2O2 formed directly from H2 and O2 increases with increasing Pd loading over zeolite up to 0.6% and subsequently decreases slightly as the Pd loading increases. The optimum amount of H2O2 produced is 6.4 mmol. Over Pd/HBEA + Fe/Y, when H2 : O2 = 40 : 40 ml/min is supplied, phenol conversion increases from 4.6% at 2 h to 13.6% at 8 h with high catechol selectivity in the range of 65–79%. The hydroxylation activities over redox catalyst with H2O2 are compared. Hydroxylation activity is improved by encapsulating FePc onto Y zeolite. In terms of TON, FePc/Y exhibits 3.5 times higher capacity than Fe/Y.  相似文献   

5.
The vapor-phase synthesis of 3-methylindole from glycerol and aniline over Cu/NaY modified by K2O was investigated. The catalysts were characterized by X-ray diffraction (XRD) and the temperature- programmed desorption of ammonia (NH3-TPD). The effect of the reaction temperature on the activity and selectivity of Cu]NaY-K2O catalyst was also investigated. The results indicated that the addition of K2O to Cu/NaY increased the selectivity of the catalyst remarkably because the amount of middle-strong acid sites decreased clearly. The decrease of the reaction temperature was beneficial for the increase of 3- methylindole selectivity. Over Cu/NaY-K2O, the selectivity of 3-methylindole reached 75% and the yield of the target product was up to 47% at 220 ℃. A probable catalytic mechanism for the synthesis of 3- methylindole from glycerol and aniline was proposed.  相似文献   

6.
采用浸渍法制备了不同负载量的FeCl3/Al2O3固体氧化剂, 并考察了载体和溶剂对氧化2-萘胺和2-萘酚交叉偶联的影响. 结果表明: 在60 ℃, 氯苯作溶剂的情况下, 含TiO2 (质量分数)5%的载体, 负载10% FeCl3时2-氨基-2'-羟基-1,1'-联萘(NOBIN)的收率最高达到了95.01%; 用过的固体氧化剂经H2O2氧化处理后活性明显恢复, 证明此法是一条循环再生的有效途径.  相似文献   

7.
章表明  曹旭鹏  薛松  肖通虎  张卫 《催化学报》2010,31(10):1293-1299
 在溴化钾存在下, 大型海洋藻类珊瑚藻的钒-溴过氧化物酶 (V-BPO) 可在常温下催化 H2O2 环氧化环己烯生成环氧环己烷. 通过用含 1.0 mmol/L 钒离子和 1.0 mmol/L 钙离子的缓冲溶液透析 V-BPO, 用恒流泵向反应体系中连续添加 H2O2, 并优化其它反应条件, 可提高该催化反应时空收率. 在优化的反应条件下, 产物环氧环己烷的时空收率为 4.79 g/(h•L), 对 H2O2 的收率为 74%, 均比文献最高值提高了 78%.  相似文献   

8.
Summary Epoxidation of natural terpene (+)-carvone by the system consisting of a catalyst, oxalic acid (co-catalyst) and H2O2 (70% aqueous solution; oxidant) was studied and factorial design methods were applied for the optimization of this reaction. A dinuclear manganese(IV) complex [LMn(O)3MnL](PF6)2 (L = 1,4,7-trimethyl-1,4,7-triazacyclononane) was used as a catalyst, and acetonitrile was employed as a solvent. An analysis by methods of the complete 24 factorial design showed that an increase in the catalyst concentration gives a strong positive effect on the carvone conversion and selectivity. Hydrogen peroxide has a smaller positive effect on the conversion, but at high concentration, H2O2 leads to some decrease in the selectivity. An increase in the oxalic acid concentration has a beneficial effect on the conversion, but does not affect the selectivity.  相似文献   

9.
苏际  周军成  刘春燕  王祥生  郭洪臣 《催化学报》2010,31(10):1195-1199
 将 H2/O2 非平衡等离子体现场产生的气态 H2O2和丙烯与耦合反应器中钛硅沸石 TS-1 直接接触, 实现了丙烯气相环氧化反应. 结果表明, 非平衡等离子体生成气态 H2O2 的速率由介质阻挡放电的输入功率决定, 环氧丙烷的生成速率和选择性取决于钛硅沸石催化剂和反应条件. 在 H2 和 O2 进料流量分别为 170 和 8 ml/min, 介质阻挡放电输入功率为 3.5 W, 环氧化反应温度为 110 oC, 丙烯进料量为 18 ml/min, 催化剂用量为 0.8 g 的条件下, 生成环氧丙烷产率达 246.9 g/(kg•h)、环氧丙烷选择性和 H2O2 有效利用率分别为 95.4% 和 36.1%, 反应 36 h 内未见催化剂失活.  相似文献   

10.
Oxidative polymerization of aniline, anthranilic acid, and aniline‐co‐anthranilic acid by potassium dichromate Cr(VI) as an oxidant in acidic medium was investigated. In this study, the polymerization process of aniline, o‐anthranilic acid as well as aniline/o‐anthranlic acid using K2Cr2O7 produced, coordinated Cr(III)/polyaniline (PANI), Cr(III)/polyanthranilic acid (PAA) and Cr(III)/poly aniline‐co‐anthranilic acid (PANAA). The mechanism of polymerization reaction in the presence of dichromate was hypothesized. The precursor chromium doped polymers were characterized by TGA, FT‐IR, UV‐visible, XRD analyses. Cr2O3 nanoparticles size were determined using TEM analysis. The calcinations process of synthesized chromium doped PANI, PAA and PANAA yields Cr2O3 nanoparticles 26%, 31%, and 34% wt. respectively. Rhombohedral phase of Cr2O3 particles in the range from 33 to 61 nm was produced from chromium/polyanthranilic acid (PAA) and chromium/poly(aniline‐co‐anthranilic acid) PANAA. UV‐ visible analysis showed that optical band gaps (Eg) of doped poly aniline and its derivatives are in the range from1.55 to 1.80 using Tacu's law. The band gap values reveal that the doped chromium emeraldine base can be used as semiconductor materials. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
刘兴海  朱海艳  石雷  孙琪 《催化学报》2011,32(1):144-148
研究了CoO/SiO2-Al2O3催化剂上苯胺和1,6-己二醇气相催化合成1-苯基氮杂环庚烷的反应,并采用N2吸附-脱附、X射线衍射、H2程序升温还原和NH3程序升温脱附技术对催化剂进行表征.结果表明,CoO/SiO2-Al2O3催化剂表现出较高的活性和选择性.当CoO担载量为0.3mmol/g时,催化剂前体在700℃...  相似文献   

12.
A new support for Pd(II) was synthesized via the functionalization of Fe3O4 nanoparticles with N-(2-aminoethyl)acetamide. PdCl2 was anchored to the support for obtaining a heterogeneous magnetically recoverable catalyst for Pd(II). High yield and excellent selectivity were obtained for the green epoxidation of styrene derivatives using H2O2 as a green oxidant in H2O as the solvent at 100 °C. Also, the recovered catalyst is applicable for four times without significant decrease in yield.  相似文献   

13.
Mesoporous nanocomposite membranes with vanadium oxide–carbon nanotubes (VxOy-CNTs) embedded in γ-Al2O3 were successfully synthesized using the dip coating method. The membranes were evaluated for styrene oxidation to determine the optimum styrene conversion and benzaldehyde selectivity. Several factors that influence the preparation of defect-free coatings, such as the type of binder, the binder addition time and surface support treatments, were investigated. The physico-chemical permeation properties of the membranes were characterized using scanning electron microscope, transmission electron microscope (TEM), X-ray Diffraction XRD, Nitrogen adsorption (BET) and Thermogravimetric TGA. Response surface methodology (RSM) was used to investigate the effects of oxidant (H2O2) concentration, temperature, contact time and catalyst loading on styrene conversion and the selectivity of benzaldehyde. Based on the RSM analysis, the optimal oxidation conditions included a reaction temperature of 45 °C, a differential pressure of 1.5 bars, a molar ratio of H2O2: styrene of 1.5:1 and a catalyst loading of 30 %. These conditions resulted in the maximal styrene conversion of 25.6 and 84.9 % benzaldehyde selectivity.  相似文献   

14.
The sterically hindered Schiff bases (L3–L5), prepared from 3,5‐dicumenyl salicylaldehyde and chiral amino alcohols, were used in combination with Ti(OiPr)4 for asymmetric oxidation of aryl methyl sulfides with H2O2 as terminal oxidant. Among the ligands L3–L5, L4 with a tert‐butyl group in the chiral carbon of the amino alcohol moiety gave the best result with 89% yield and 73% ee for the sulfoxidation of thioanisole under optimal conditions [with 1 mol% of Ti(OiPr)4 in a molar ratio of 100:1:1.2:120 for sulfide:Ti(OiPr)4:ligand:H2O2 in CH2Cl2 at 0 °C for 3 h]. The reaction afforded good yield (84%) with a moderate enantioselectivity (62% ee) even with a lower catalyst loading from 1.0 to 0.5 mol%. The oxidations of methyl 4‐bromophenyl sulfide and methyl 4‐methoxyphenyl sulfide with H2O2 catalyzed by the Ti(OiPr)4–L4 system gave 79–84% yields and 54–59% ee of the corresponding sulfoxides in CH2Cl2 at 20 °C. The chiral induction capability of the cumenyl‐modified sterically hindered Schiff bases for sulfoxidation was compared with the conventional Schiff bases bearing tert‐butyl groups at the 3,5‐positions of the salicylidenyl unit. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Direct synthesis of phenol by hydroxylation of benzene with H2O2 over the vanadium-substituted heteropolymolybdic acid catalyst was investigated at 70 °C. H2O2 was used as an oxidant while 36 wt.% MeCO2H was employed as the solvent. After 100 min the selectivity for phenol was 93% and the yield of PhOH was 10.1%. The catalyst was characterized by elemental analysis, thermal gravimetric analysis, infrared spectroscopy, u.v.–vis spectroscopy, X-ray diffraction, and 31P-n.m.r. and 51V-n.m.r. techniques. The experimental conditions such as reaction temperature, the amounts of H2O2 and catalyst were explored. The as-prepared phenol could be separated by column chromatography and was characterized by infrared and mass spectrometry.  相似文献   

16.
Aniline was polymerised enzymatically in aqueous solution at pH = 4.3 and 25°C in the presence of submicrometer-sized vesicles formed from sodium bis(2-ethylhexyl)sulphosuccinate (AOT). H2O2 served as oxidant and the enzyme used was either horseradish peroxidase isoenzyme C (HRPC) or soybean peroxidase (SBP), both being class III peroxidases. From previous studies with HRPC, it is known that stable vesicle suspensions containing the emeraldine salt form of polyaniline (PANI-ES) can be obtained within 1–2 days with a 90–95 % yield, provided that optimal reaction conditions are applied. Unfortunately, HRPC becomes inactivated during polymerisation. In the present study, a linear dendritic block copolymer was added to HRPC, resulting in higher operational enzyme stability; the stabilising effect, however, was too small to afford a substantial decrease in the required amount of enzyme. Moreover, replacing HRPC with SBP was of no advantage, although SBP is known to be more stable towards inactivation by H2O2 than HRPC. By contrast, SBP was found to be much slower in oxidising aniline, and complete inactivation of SBP occurred before all the aniline monomers were oxidised, leading to low yields and the formation of over-oxidised products. The same was observed for HRP isoenzyme A2. Reactions without vesicles indicated that peroxidase inactivation was probably caused by PANI-ES.  相似文献   

17.
A Schiff base ligand was synthesized by the condensation of salicylaldehyde with l-tyrosine. Interaction of this ligand with Mn(II)-exchanged zeolite Y leads to encapsulation of the ligand within the zeolite and complexation of the metal. The encapsulated complex has been characterized by spectroscopic studies and chemical analyses. This material serves as a catalyst for the oxidation of cyclohexene to cyclohexene epoxide and 2-cyclohexene-1-ol using H2O2 as oxidant. The reaction conditions have been optimized for solvent, temperature and amount of oxidant and catalyst. The catalyst shows high activity and selectivity toward production of cyclohexene epoxide in acetonitrile at 60 °C with [H2O2]/[C6H10] = 2.5 molar ratio. Comparison of the encapsulated catalyst with the corresponding homogeneous catalyst showed that the heterogeneous catalyst had higher activity and selectivity than the homogeneous catalyst.  相似文献   

18.
Titania‐silica immobilized Co(salen) complexes containing the heterobinuclear site were prepared by the sol–gel method for the catalytic synthesis of methyl N‐phenylcarbamate (MPC) by the oxidative carbonylation of aniline. It was found that the Ti:Si mole ratio had an important effect on the catalytic performance of Co(salen) complexes. When the Ti:Si ratio was 0.1, titania‐silica supported Co(salophen) showed the best catalytic activity. Under the reaction conditions, Co(salophen)/TS‐0.1, 0.5 g, aniline 11 mmol, methanol 25 ml, KI 2.2 mmol, CO:O2 9:1, total pressure 6 MPa, 150 °C, 3 h, the conversion of aniline and the selectivity of MPC were 60.7 and 88.1%, respectively. The XRD studies showed that titania was highly dispersed in the silica matrix. Co(salophen)/TS‐0.1 was reused five times with no significant loss of the activity, and no Co leaching was observed in the reaction. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
ABSTRACT

Vicinal diols are important building blocks for chemicals and pharmaceuticals. Currently, they are produced from olefins using solvents and harmful oxidants unfavorable from an environmental and economic point of view. This work lies on the synthesis of 1,2 cyclohexane diol from cyclohexene by a green route. To achieve it, a series of Cobalt Keggin heteropolyanion salt (Co1.5PW12O40) loaded on activated carbon with different contents was prepared, characterized and tested for the synthesis of diol. The effect of various parameters such as reaction temperature, reaction time and CO2 pressure on the reaction was studied. The effect of reaction temperature in the range 60-80 °C showed that high temperatures favor diol formation while low temperatures favor cyclohexanone and a segmented concave Arrhenius graph was observed. The results of this work showed that oxidation by H2O2 in the presence of CO2 is an efficient oxidant system for the production of 1.2 cyclohexane diol over carbon activated carbon supported Co1.5PW12O40. Thanks to CO2 as a soft oxidizing agent, a conversion of 96.9% and a selectivity in 1, 2 cyclohexane diol of 64.2% was obtained. This simple, safe and environmentally method could be an alternative green route for vicinal diols production from alkenes.  相似文献   

20.
采用浸渍法制备了不同NiO含量的Ni/Al2O3催化剂,并进行了2-甲基呋喃加氢制2-甲基四氢呋喃性能的考察。结果表明,在制备的NiO负载量为10%、20%、25%、30%和40%的Ni/Al2O3催化剂中,随着NiO负载量增加,加氢反应的选择性与2-甲基呋喃的转化率均呈现出先增加后减小的趋势。其原因是由于适当增加NiO负载量有利于催化剂表面活性中心的形成,有利于加氢反应的进行;但是过度负载的NiO容易堵塞Al2O3载体中的介孔通道,降低反应的转化率与选择性。在釜式反应器中进行反应,对加氢反应条件进行了优化,发现在反应压力为3 MPa、反应温度150℃、机械搅拌速率为1000 r/min时,Ni/Al2O3催化2-甲基呋喃加氢制2-甲基四氢呋喃具有较高的选择性。当NiO负载量为25%时,2-甲基四氢呋喃的选择性最高为97.1%,2-甲基呋喃的转化率达到99.4%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号