首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cui  Haochen  Wu  Jayne  Eda  Shigetoshi  Chen  Jiangang  Chen  Wei  Zheng  Lei 《Mikrochimica acta》2015,182(13):2361-2367

A label-free and single-step method is reported for rapid and highly sensitive detection of bisphenol A (BPA) in aqueous samples. It utilizes an aptamer acting as a probe molecule immobilized on a commercially available array of interdigitated aluminum microelectrodes. BPA was quantified by measuring the interfacial capacitance change rate caused by the specific binding between bisphenol A and the immobilized aptamer. The AC signal also induces an AC electrokinetic effect to generate microfluidic motion for enhanced binding. The capacitive aptasensor achieves a limit of detection as low as 10 fM(2.8 fg ⋅ mL − 1) with a 20 s response time. The method is inexpensive, highly sensitive, rapid and therefore provides a promising technology for on-site detection of BPA in food and water samples.

A. AC electrokinetics effect plays a vital role in BPA detection by introducing microfluidic movement to accelerate the molecular transport to the electrode surface.

B. The ACEK capacitive aptasensor has a limit of detection as low as 10 fM (2.8 fg ⋅ mL − 1) with a 20-s response time.

  相似文献   

2.
Huang  Shan  Lu  Shuangyan  Huang  Chusheng  Sheng  Jiarong  Su  Wei  Zhang  Lixia  Xiao  Qi 《Mikrochimica acta》2015,182(15):2529-2539

We describe a square wave anodic stripping voltammetric (SWASV) platform for the determination of Cu(II). It is based on the use of amino-reduced graphene oxide (NH2-rGO) and β-cyclodextrin (β-CD) that were self-assembled on the surface of a glassy carbon electrode (GCE). The hydrophilicity and electrochemical performance of the resulting modified GCE were investigated by measurement of static contact angles, cyclic voltammetry and electrochemical impedance spectroscopy. Cu(II) was reduced at −1.1 V and then reoxidized at −0.012 V. Under optimum experimental conditions, the modified GCE exhibited excellent SWASV response in that the stripping peak currents (when sweeping between −0.3 and +0.25 V) depends on the concentration of Cu(II) in the 30 nM to 100 μM range. The limit of detection is 2.8 nM (at 3σ/slope). The modified GCE displaying good reproducibility, is stable, highly sensitive and selective. It was successfully applied to the determination of Cu(II) in synthetic and real water samples. The fast electron transfer rate and simple preparation of the NH2-rGO/β-CD composite makes it a promising electrode material for applications in sensing of heavy metal ions.

Amino-modified rGO and β-cyclodextrin form an attractive material for use in an electrochemical platform for highly sensitive and selective determination of Cu(II).

  相似文献   

3.
Xu  Jingyue  Li  Ying  Bie  Jiaxin  Jiang  Wei  Guo  Jiajia  Luo  Yeli  Shen  Fei  Sun  Chunyan 《Mikrochimica acta》2015,182(13):2131-2138

A sensitive, specific and rapid colorimetric aptasensor for the determination of the plasticizer bisphenol A (BPA) was developed. It is based on the use of gold nanoparticles (AuNPs) that are positively charged due to the modification with cysteamine which is cationic at near-neutral pH values. If aptamers are added to such AuNPs, aggregation occurs due to electrostatic interactions between the negatively-charged aptamers and the positively-charged AuNPs. This results in a color change of the AuNPs from red to blue. If a sample containing BPA is added to the anti-BPA aptamers, the anti-BPA aptamers undergo folding via an induced-fit binding mechanism. This is accompanied by a conformational change, which prevents the aptamer-induced aggregation and color change of AuNPs. The effect was exploited to design a colorimetric assay for BPA. Under optimum conditions, the absorbance ratio of A 527/A 680 is linearly proportional to the BPA concentration in the range from 35 to 140 ng∙mL−1, with a detection limit of 0.11 ng∙mL−1. The method has been successfully applied to the determination of BPA in spiked tap water and gave recoveries between 91 and 106 %. Data were in full accordance with results obtained from HPLC. This assay is selective, easily performed, and in our perception represents a promising alternative to existing methods for rapid quantification of BPA.

The negatively-charged anti-BPA aptamers can absorb onto the positively-charged cysteamine-capped AuNPs (cysteamine-AuNPs) via electrostatic interactions, which can cause the aggregation of AuNPs accompanied by a red-to-blue color change. In the presence of BPA, the specific binding of BPA to the aptamers induces the conformation changes of anti-BPA aptamers, which can release the aptamers from cysteamine-AuNPs and thus prevent the aggregation and color change of cysteamine-AuNPs.

  相似文献   

4.
Ye  Cui  Zhong  Xia  Chai  Yaqin  Yuan  Ruo 《Mikrochimica acta》2015,182(13):2215-2221

An ultrasensitive electrochemical glucose biosensor has been developed by depositing C60-fullerene functionalized with tetraoctylammonium bromide (C60-TOAB+) on the surface of a glassy carbon electrode (GCE). The glucose-binding protein concanavalin A (Con A) was then linked to the surface. Binding of glucose by Con A affects the electroactivity of the reversible redox couple C60/C60 , and this finding forms the basis for a quantitative glucose assay over the 10 to 10 mM concentration range and with a lower detection limit of 3.3 nM (at an S/N ratio of 3). The sensitivity of this sensor allowed glucose to be determined in saliva. This biosensor possesses excellent selectivity, outstanding reproducibility and good long-term stability.

An ultrasensitive electrochemical glucose biosensor has been developed by depositing C60-fullerene functionalized with tetraoctylammonium bromide (C60-TOAB+) on the surface of a glassy carbon electrode (GCE). The glucose-binding protein concanavalin A (Con A) was then linked to the surface. Binding of glucose by Con A affects the electroactivity of the reversible redox couple C60/C60 , and this finding forms the basis for a quantitative glucose assay over the 10 to 10 mM concentration range and with a lower detection limit of 3.3 nM (at an S/N ratio of 3). The sensitivity of this sensor allowed glucose to be determined in saliva.

  相似文献   

5.
Wang  Yong  Qu  Jianhang  Li  Shufang  Dong  Ying  Qu  Jianying 《Mikrochimica acta》2015,182(13):2277-2283

We describe an electrochemical sensor for simultaneous determination of hydroquinone (HQ) and catechol (CC). A glassy carbon electrode (GCE) was modified with gold nanoparticles, L-cysteine, and ZnS/NiS@ZnS quantum dots using a layer-by-layer technique. The materials were characterized by X-ray diffractometry, field emission scanning electron microscopy, and electrochemical impedance and Fourier transform infrared spectroscopy. Cyclic voltammetry and differential pulse voltammetry revealed this modified GCE to represent a highly sensitive sensor for the simultaneous determination of HQ and CC. The anodic peak current for HQ at a working voltage of 80 mV (vs. Ag/AgCl) is related to its concentration in the 0.1 to 300 μM range (even in the presence of 0.1 mM of CC). The anodic peak current for CC at a working voltage of 184 mV is related to its concentration in the 0.5 to 400 μM range (even in the presence of 0.1 mM of HQ). The detection limits (at an S/N ratio of 3) are 24 and 71 nM for HQ and CC, respectively. The modified GCE was successfully applied to the determination of HQ and CC in aqueous solutions and gave satisfactory results.

A glassy carbon electrode was modified with gold nanoparticles, ZnS/NiS@ZnS quantum dots and L-cysteine and used for simultaneous determination of hydroquinone and catechol.

  相似文献   

6.
Zhou  Dan-Ling  Zhang  Qian-Li  Lv  Zhang-Ying  Chen  Wan-Yi  Liu  Xiang-Feng  Lu  Ya-Hui  Wang  Ai-Jun  Feng  Jiu-Ju 《Mikrochimica acta》2013,180(15):1495-1500

We have developed a method for in-situ construction of a porous network-like silver film on the surface of a glassy carbon electrode (GCE). It is based on a galvanic replacement reaction where a layer of copper nanoparticles is first electrodeposited as a sacrificial template. The silver film formed possesses a porous network-like structure and consists of an assembly of numerous nanoparticles with an average size of 200 nm. The electrode displays excellent electrocatalytic activity, good stability, and fast response (within 2 s) toward the reduction of nitrate at a working potential of −0.9 V. The catalytic currents linearly increase with the nitrate concentrations in the range of 0.08–6.52 mM, with a detection limit of 3.5 μM (S/N = 3) and a repeatability of 3.4 % (n = 5).

A facile method was developed for in situ construction of a porous network-like Ag film on a glassy carbon electrode by a galvanic replacement reaction, where a layer of Cu nanoparticles previously electrodeposited as a sacrificial template. Thus-formed Ag film displays excellent electrocatalytic activity, good stability, and fast response (within 2 s) toward nitrate reduction.

  相似文献   

7.
Dewi  Melissa R.  Laufersky  Geoffry  Nann  Thomas 《Mikrochimica acta》2015,182(13):2293-2298

Hetero-dimeric magnetic nanoparticles of the type Au-Fe3O4 have been synthesised from separately prepared, differently shaped (spheres and cubes), monodisperse nanoparticles. This synthesis was achieved by the following steps: (a) Mono-functionalising each type of nanoparticles with aldehyde functional groups through a solid support approach, where nanoparticle decorated silica nanoparticles were fabricated as an intermediate step; (b) Derivatising the functional faces with complementary functionalities (e.g. amines and carboxylic acids); (c) Dimerising the two types of particles via amide bond formation. The resulting hetero-dimers were characterised by high-resolution TEM, Fourier transform IR spectroscopy and other appropriate methods.

Nano-LEGO: Assembling two types of separately prepared nanoparticles into a hetero-dimer is the first step towards complex nano-architectures. This study shows a solid support approach to combine a gold and a magnetite nanocrystal.

  相似文献   

8.
Chu  Chengchao  Li  Long  Li  Shuai  Li  Meng  Ge  Shenguang  Yu  Jinghua  Yan  Mei  Song  Xianrang 《Mikrochimica acta》2013,180(15):1509-1516

We report on an ultrasensitive fluorescence immunoassay for human chorionic gonadotrophin antigen (hCG). It is based on the use of silica nanoparticles coated with a copolymer (prepared from a fluorene, a phenylenediamine, and divinylbenzene; PF@SiO2) that acts as a fluorescent label for the secondary monoclonal antibody to β-hCG antigen. In parallel, Fe3O4 nanoparticles were coated with polyaniline, and these magnetic particles (Fe3O4@PANI) served as a solid support for the primary monoclonal antibody to β-hCG antigen. The PF@SiO2 exhibited strong fluorescence and good dispersibility in water. A fluorescence sandwich immunoassay was developed that enables hCG concentrations to be determined in the 0.01–100 ng·mL−1 concentration range, with a detection limit of 3 pg·mL−1.

Fluorescence detection of prepared immune reagent nano-composites using the fluorescence cell

  相似文献   

9.

We have investigated the gas sensing properties of ZnO thin films (100 to 200 nm thickness) deposited by room-temperature radio frequency magnetron sputtering. The sensitivity of the films to ethanol vapor was measured in the 10 to 50 ppm concentration range at operating temperatures between 200 and 400 °C. A synergetic effect of decreasing grain size and increasing operating temperature was observed towards the improvement of the sensitivity, reaching a value of 54 and a limit of detection as low as 0.61 ppm. The decrease in the grain size resulted in prolonged response time but faster recovery. In any case, both response time and recovery time are < 400 s. The results demonstrate that room-temperature magnetron sputtering is a viable approach to enhance the performances of ZnO films in sensors for ethanol vapor.

Sensor response for ZnO films in presence of 50 ppm ethanol as a function grain size and temperature

  相似文献   

10.
Sun  Dong  Xu  Caiqun  Long  Jianghua  Ge  Teng 《Mikrochimica acta》2015,182(15):2601-2606

This article describes an electrochemical sensor for the dye additive Sunset Yellow (SY). It consists of a carbon paste electrode modified with nanostructured resorcinol-formaldehyde (RF) resin. The RF resin warrants strong signal enhancement and a strongly increased oxidation peak currents of SY at 0.66 V (vs. SCE). The effects of pH value, amount of RF polymer, accumulation potential and time were optimized. The sensor has a linear response to SY in the 0.3 to 125 nM concentration range, and the limit of detection is 0.09 nM after a 2-min accumulation time. The electrode was applied to the analysis of samples of wastewater and drinks, and the results are consistent with those obtained by HPLC.

Nanostructured resorcinol-formaldehyde (RF) resin was prepared and used as a material for electrochemical determination of Sunset Yellow.

  相似文献   

11.
Xu  Ti-Sen  Li  Xiang-Yong  Xie  Zhao-Hui  Li  Xue-Gui  Zhang  Hai-Ying 《Mikrochimica acta》2015,182(15):2541-2549

We report on a new electrochemical immunosensor for the carcinoembryonic antigen (CEA; a model analyte). First, poly(o-phenylenediamine) nanospheres (PPDNSs) were synthesized by using a wet-chemistry method. The nanospheres were utilized as the support for immobilizing horseradish peroxidase-labeled polyclonal rabbit anti-human CEA antibody (HRP-anti-CEA) on a pretreated glassy carbon electrode (GCE) using glutaraldehyde as a crosslinker. In the presence of target CEA, an antigen-antibody immunocomplex formed on the electrode. This results in a partial inhibition of the active center of HRP and decreases the activity of HRP in terms of H2O2 reduction. The performance and factors influencing the performance of the immunoelectrode were studied. Under optimal conditions, the reduction current obtained from the anti-CEA-conjugated HRP (best at a working voltage of −265 mV vs. Ag/AgCl) is proportional to the CEA concentration in the 0.01 to 60 ng mL−1 range, with a detection limit of 3.2 pg mL−1. Non-specific adsorption was not observed. Relative standard deviations for intra-assay and inter-assay are <8.3 % and <9.7 %, respectively. The method was applied to the analysis of nine human serum samples, and a good relationship was found between the electrochemical immunoassay and the commercialized ELISA kit for human CEA.

A new electrochemical immunosensor based on poly(o-phenylenediamine) nanospheres was developed for the rapid detection of carcinoembryonic antigen via the inhibition of enzymatic activity.

  相似文献   

12.
Liu  Guangyang  Yang  Xin  Li  Tengfei  Yu  Hailong  Du  Xinwei  She  Yongxin  Wang  Jing  Wang  Shanshan  Jin  Fen  Jin  Maojun  Shao  Hua  Zheng  Lufei  Zhang  Yanxin  Zhou  Pan 《Mikrochimica acta》2015,182(11):1983-1989

We report on a method for the determination of the herbicide atrazine in tap water samples using melamine-modified gold nanoparticles (Mel-AuNPs). If a solution containing atrazine is added to a solution of such NPs, a color change occurs from wine-red to blue. This is due to a transition from monodisperse to aggregated Mel-AuNPs and caused by strong hydrogen bonding between atrazine and melamine. The color change can be monitored by a UV–vis spectrophotometer or with bare eyes. The ratio of the absorbances at 640 and 523 nm is linearly related to the logarithm of the atrazine concentration in the 0.165 to 16.5 μM range, and (with different slope) in the 16.5 μM to 330 μM range. The detection limit of atrazine is as low as 16.5 nM (S/N = 3). The method was successfully applied to the determination of atrazine in spiked tap water and gave recoveries that ranged from 72.5 % to 102.3 %.

  相似文献   

13.

This work describes a novel polyaniline-magnetite nanocomposite and its application to the preconcentration of Cr(VI) anions. The material was obtained by oxidative polymerization of aniline in the presence of magnetite nanoparticles. The parameters affecting preconcentration were optimized by a Box-Behnken design through response surface methodology. Extraction time, amount of magnetic sorbent and pH value were selected as the main factors affecting sorption. The sorption capacity of the sorbent for Cr(VI) is 54 mg g−1. The type, volume and concentration of the eluents, and the elution time were selected as main factors in the optimization study of the elution step. Following sorption and elution, the Cr(VI) ions were reacted with diphenylcarbazide, and the resulting dye was quantified by HPLC with optical detection at 546 nm. The limit of detection is 0.1 μg L−1, and all the relative standard deviations are <6.3 %. The nanocomposite was successfully applied to the rapid extraction and determination of trace quantities of Cr(VI) ions in spiked water samples.

A schematic procedure of magnetic solid phase extraction

  相似文献   

14.

A molecularly imprinted polymer (MIP) for the specific retention of neopterin has been developed. A set of 6 polymers was prepared by radical polymerization under different experimental condition using methacrylic acid as functional monomer and ethylene glycol dimethacrylate as crosslinker, with the aim to understand their influence on the efficiency of the MIP. The performance of each MIP was tested in batch experiments via their binding capacity. The MIP prepared in the presence of nickel ions in dimethylsulfoxide-acetonitrile mixture (P4) exhibited the highest binding capacity for neopterin (260 μmol per gram of polymer). A selectivity study with two other pteridines demonstrated the polymer P4 also to possess the best selectivity.

A molecularly imprinted polymer for the specific retention of neopterin was developed. A set of 6 polymers was prepared under different experimental condition. The performance of each MIP was tested through their binding capacity. The MIP P4 prepared in the presence of nickel ions exhibited the highest binding capacity

  相似文献   

15.
Wang  Ruiling  Yuan  Yanan  Yang  Xun  Han  Yehong  Yan  Hongyuan 《Mikrochimica acta》2015,182(13):2201-2208

Microparticles were synthesized by suspension copolymerization of the synthetic ionic liquid (IL) 1-allyl-3-methyl-imidazolium bromide with ethylene glycol dimethacrylate. The particles have a regular spherical shape and an average diameter of 65 ± 24 μm. Their affinity for the fluoroquinolone antibiotics ofloxacin (OFL), lomefloxacin (LOM) and ciprofloxacin (CIP) is much higher than that of the blank polymer (not containing an IL), of polymers using methacrylic acid as functional monomer, of hydrophilic-lipophilic balanced sorbents, and of C18 sorbents. The microparticles were applied to the solid-phase extraction and rapid preconcentration of the fluoroquinolones from urine which then were quantified by HPLC. The calibration plot covers the 0.05 to 20 μg mL−1 concentration range, and the average recoveries at three spiking levels range from 93.6 to 103.7 %, with RSD of ≤5.7 %. The method was successfully applied to the determination of fluoroquinolones in spiked urine.

Microparticles covalently functionalized with an ionic liquid ([Amim][Br]) were synthesized by suspension copolymerization and show higher affinity for fluoroquinolones than other sorbents. The microparticles were used as a sorbent for solid-phase extraction and preconcentration of three fluoroquinolones from urine.

  相似文献   

16.
Ma  Mingyang  Zheng  Xingwang 《Mikrochimica acta》2015,182(13):2193-2199

We report on the preparation of fluorescent silica nanoparticles (SiNPs) modified with chitosan and lucigenin by using a reverse microemulsion method. The introduction of chitosan to the lucigenin doped SiNPs is shown to improve the fluorescence quantum yield. The modified SiNPs were used as fluorescent markers in an aptamer-based method for selective determination of thrombin. In this protocol, thrombin was sandwiched between streptavidin-coated magnetic beads and the fluorescent SiNPs modified with a thrombin-binding aptamer. The method was successfully applied to the determination of thrombin in human serum and showed a detection limit as low as 0.02 nM. In our perception, the protocol presented here is promising in that such SiNPs may be applied to the sensitive fluorescent detection of other analytes by changing the corresponding aptamer.

The introduction of chitosan to the lucigenin doped SiNPs is shown to improve the fluorescence quantum yield. The modified SiNPs were used as fluorescent markers in an aptamer-based method for selective determination of thrombin. The effect of chitosan concentration on fluorescence intensity of lucigenin/SiO2 nanoparticles (the volume of chitosan solution is 100 μL)

  相似文献   

17.
Liu  Yang  Shi  Liang  Gong  Jin  Fang  Yu-Ting  Bao  Ning  Gu  Hai-Ying  Zeng  Jiang 《Mikrochimica acta》2015,182(15):2461-2468

Hemoglobin (Hb) has been demonstrated to endow electrochemical sensors with pH-switchable response because of the presence of carboxyl and amino groups. Hb was deposited in a chitosan matrix on a glassy carbon electrode (GCE) that was previously coated with clustered gold nanoparticles (Au-NPs) by electrodeposition. The switching behavior is active (“on”) to the negatively charged probe [Fe(CN)6 3−] at pH 4.0, but inactive (“off”) to the probe at pH 8.0. This switch is fully reversible by simply changing the pH value of the solution and can be applied for pH-controlled reversible electrochemical reduction of H2O2 catalyzed by Hb. The modified electrode was tested for its response to the different electroactive probes. The response to these species strongly depends on pH which was cycled between 4 and 8. The effect is also attributed to the presence of pH dependent charges on the surface of the electrode which resulted in either electrostatic attraction or repulsion of the electroactive probes. The presence of Hb, in turn, enhances the pH-controllable response, and the electrodeposited Au-NPs improve the capability of switching. This study reveals the potential of protein based pH-switchable materials and also provides a simple and effective strategy for fabrication of switchable chemical sensors as exemplified in a pH-controllable electrode for hydrogen peroxide.

A pH “on-off” switchable nanobiosensor was fabricated by casting a chitosan-hemoglobin biocomposite onto nano-gold electrode. This composite film exhibits not only excellent pH-responsive on (pH 4.0)-off (pH 8.0) behavior but also excellent pH-tunable on-off bioelectrocatalysis of H2O2.

  相似文献   

18.

An electrochemical sensor was developed and tested for detection of L-tyrosine in the presence of epinephrine by surface modification of a glassy carbon electrode (GCE) with Nafion and cerium dioxide nanoparticles. Fabrication parameters of a surfactant-assisted precipitation method were optimized to produce 2–3 nm CeO2 nanoparticles with very high surface-to-volume ratio. The resulting nanocrystals were characterized structurally and morphologically by X-ray diffractometery (XRD), scanning and high resolution transmission electron microscopy (SEM and HR-TEM). The nanopowder is sonochemically dispersed in a Nafion solution which is then used to modify the surface of a GCE electrode. The electrochemical activity of L-tyrosine and epinephrine was investigated using both a Nafion-CeO2 coated and a bare GCE. The modified electrode exhibits a significant electrochemical oxidation effect of L-tyrosine in a 0.2 M Britton-Robinson (B-R) buffer solution of pH 2. The electro-oxidation peak current increases linearly with the L-tyrosine concentration in the molar concentration range of 2 to 160 μM. By employing differential pulse voltammetry (DPV) for simultaneous measurements, we detected two reproducible peaks for L-tyrosine and epinephrine in the same solution with a peak separation of about 443 mV. The detection limit of the sensor (signal to noise ratio of 3) for L-tyrosine is ~90 nM and the sensitivity is 0.20 μA μM−1, while for epinephrine these values are ~60 nM and 0.19 μA μM−1. The sensor exhibited excellent selectivity, sensitivity, reproducibility and stability as well as a very good recovery time in real human blood serum samples.

Simultaneous electrochemical determination of L-tyrosine and epinephrine in blood plasma with Nafion-CeO2/GCE modified electrode showing a 443 mV peak-to-peak potential difference between species oxidation peak currents.

  相似文献   

19.
Zare  Fahimeh  Ghaedi  Mehrorang  Daneshfar  Ali 《Mikrochimica acta》2015,182(11):1893-1902

The solid phase extraction (SPE) is described for preconcentration of the antidepressant drugs amitriptyline and nortriptyline prior to their determination by HPLC with UV detection. It is based on the use of water-dispersible core-shell nanoparticles (NPs) of the Fe3O4@ZrO2@N-cetylpyridinium type. The positively charged surfactant N-cetylpyridinium forms mixed aggregates with the drugs on the surface of the core-shell and thereby improves the adsorption of amitriptyline and nortriptyline through hydrophobic and/or ionic interactions. Their extraction depends on the type and amount of surfactant, sample pH, extraction time, desorption conditions, sample volume and amount of NPs that were optimized by application of experimental design. The enrichment factors are 220 and 250, respectively, for amitriptyline and nortriptyline, and the detection limits are 0.04 and 0.08 ng·mL‾1. This protocol enables accurate and precise quantification of the two drugs in complex and low content samples. It was applied to the determination of the two drugs in plasma samples with relative recoveries in the range from 89 to 105 % and RSDs less than 4 %.

  相似文献   

20.
Zhou  Ying  Wang  Peilong  Su  Xiaoou  Zhao  Hong  He  Yujian 《Mikrochimica acta》2014,181(15):1973-1979

We are presenting an electrochemical immunosensor for the determination of the β-agonist and food additive ractopamine. A glassy carbon electrode (GCE) was modified with gold nanoparticles and a film of a composite made from poly(arginine) and multi-walled carbon nanotubes. Antibody against ractopamine was immobilized on the surface of the modified GCE which then was blocked with bovine serum albumin. The assembly of the immunosensor was followed by electrochemical impedance spectroscopy. Results demonstrated that the semicircle diameter increases, indicating that the film formed on the surface hinders electron transfer due to formation of the antibody-antigen complex on the modified electrode. Under optimal conditions, the peak current obtained by differential pulse voltammetry decreases linearly with increasing ractopamine concentrations in the 0.1 nmol•L−1 to 1 μmol•L−1 concentration range. The lower detection limit is 0.1 nmol•L−1. The sensor displays good stability and reproducibility. The method was applied to the analysis of spiked swine feed samples and gave satisfactory results.

Immunoassay for ractopamine based on glassy carbon electrode modified with gold nanoparticles and a film of a composite made from poly (arginine) and multi-walled carbon nanotubes was proposed. Under optimal conditions, the peak currents obtained by differential pulse voltammetry decreases linearly with increasing ractopamine concentrations in the 0.1 nmol•L−1 to 1 μmol•L−1 concentration range. The detection limit is 0.1 nmol•L−1.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号