首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  国内免费   1篇
化学   17篇
物理学   1篇
  2022年   2篇
  2018年   1篇
  2014年   3篇
  2013年   3篇
  2012年   4篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2003年   1篇
排序方式: 共有18条查询结果,搜索用时 46 毫秒
1.
Journal of Solid State Electrochemistry - The development of safe, fast charging, and long-lasting Li-ion batteries has been taking major steps forward through novel combinations of nanomaterials....  相似文献   
2.
An electrochemical sensor was developed and tested for detection of L-tyrosine in the presence of epinephrine by surface modification of a glassy carbon electrode (GCE) with Nafion and cerium dioxide nanoparticles. Fabrication parameters of a surfactant-assisted precipitation method were optimized to produce 2–3 nm CeO2 nanoparticles with very high surface-to-volume ratio. The resulting nanocrystals were characterized structurally and morphologically by X-ray diffractometery (XRD), scanning and high resolution transmission electron microscopy (SEM and HR-TEM). The nanopowder is sonochemically dispersed in a Nafion solution which is then used to modify the surface of a GCE electrode. The electrochemical activity of L-tyrosine and epinephrine was investigated using both a Nafion-CeO2 coated and a bare GCE. The modified electrode exhibits a significant electrochemical oxidation effect of L-tyrosine in a 0.2 M Britton-Robinson (B-R) buffer solution of pH 2. The electro-oxidation peak current increases linearly with the L-tyrosine concentration in the molar concentration range of 2 to 160 μM. By employing differential pulse voltammetry (DPV) for simultaneous measurements, we detected two reproducible peaks for L-tyrosine and epinephrine in the same solution with a peak separation of about 443 mV. The detection limit of the sensor (signal to noise ratio of 3) for L-tyrosine is ~90 nM and the sensitivity is 0.20 μA μM?1, while for epinephrine these values are ~60 nM and 0.19 μA μM?1. The sensor exhibited excellent selectivity, sensitivity, reproducibility and stability as well as a very good recovery time in real human blood serum samples.
Simultaneous electrochemical determination of L-tyrosine and epinephrine in blood plasma with Nafion-CeO2/GCE modified electrode showing a 443 mV peak-to-peak potential difference between species oxidation peak currents.  相似文献   
3.
A gold nanoparticles modified carbon paste electrode (GN‐CPE) was used as a highly sensitive electrochemical sensor for determination of tyrosine (Tyr), dopamine (DA) and uric acid (UA) in phosphate buffer solution (PBS). The study and measurements were carried out by using cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoamperometry methods. In DPV, the GN‐CPE could separate the oxidation peak potentials of DA and UA present in the same solution, though at the unmodified CPE the peak potentials were indistinguishable. The prepared electrode showed voltammetric responses with high sensitivity and selectivity for Tyr, DA and UA in optimal conditions, which makes it very suitable for simultaneous determination of these compounds. The calibration curves for Try, DA and UA were linear for the concentrations of each species. The proposed voltammetric approach was also applied to the determination of Tyr concentration in human serum as a real sample.  相似文献   
4.
The comparative electrochemical behavior of self-assembled monolayers of two Schiff's bases, 2-{[(Z)-1-(3-furyl)methylidene]amino}-1-benzenethiol (FMAB) and 2-{[(2-sulfanylphenyl)imino]methyl}phenol (SIMP) on a bare gold electrode (Au FMAB SAM-modified electrode and Au SIMP SAM-modified electrode, respectively), was investigated by means of cyclic voltammetry and electrochemical impedance spectroscopy in a 0.1 mol L(-1) KCl solution that contains 5.0 × 10(-3) mol L(-1) [Fe(CN)(6)](3-/4-). The results revealed that the modified electrodes showed an electrocatalytic activity toward the anodic oxidation of dopamine by a marked enhancement in the current response and lower overpotential (60 and 90 mV for the Au FMAB and Au SIMP SAM-modified electrodes, respectively) in phosphate buffer solution at pH 6.0. The Au SIMP SAM-modified electrode was applied successfully to the determination of dopamine in the presence of a high concentration of ascorbic acid. Selective detection was realized in total elimination of ascorbic acid response-a method different from the ones based on the potential separations. The detection limit of dopamine was 5.0 × 10(-8) mol L(-1) in a linear range from 1.0 × 10(-6) to 1.2 × 10(-4) mol L(-1) in the presence of 1.0 × 10(-3) mol L(-1) ascorbic acid. The interference studies also showed that the Au SIMP SAM-modified electrode exhibited good selectivity in the presence of a large excess of uric acid and could be employed for the determination of dopamine in pharmaceutical formulations, plasma samples and human urine with adequate selectivity and precision.  相似文献   
5.

An electrochemical sensor was developed and tested for detection of L-tyrosine in the presence of epinephrine by surface modification of a glassy carbon electrode (GCE) with Nafion and cerium dioxide nanoparticles. Fabrication parameters of a surfactant-assisted precipitation method were optimized to produce 2–3 nm CeO2 nanoparticles with very high surface-to-volume ratio. The resulting nanocrystals were characterized structurally and morphologically by X-ray diffractometery (XRD), scanning and high resolution transmission electron microscopy (SEM and HR-TEM). The nanopowder is sonochemically dispersed in a Nafion solution which is then used to modify the surface of a GCE electrode. The electrochemical activity of L-tyrosine and epinephrine was investigated using both a Nafion-CeO2 coated and a bare GCE. The modified electrode exhibits a significant electrochemical oxidation effect of L-tyrosine in a 0.2 M Britton-Robinson (B-R) buffer solution of pH 2. The electro-oxidation peak current increases linearly with the L-tyrosine concentration in the molar concentration range of 2 to 160 μM. By employing differential pulse voltammetry (DPV) for simultaneous measurements, we detected two reproducible peaks for L-tyrosine and epinephrine in the same solution with a peak separation of about 443 mV. The detection limit of the sensor (signal to noise ratio of 3) for L-tyrosine is ~90 nM and the sensitivity is 0.20 μA μM−1, while for epinephrine these values are ~60 nM and 0.19 μA μM−1. The sensor exhibited excellent selectivity, sensitivity, reproducibility and stability as well as a very good recovery time in real human blood serum samples.

Simultaneous electrochemical determination of L-tyrosine and epinephrine in blood plasma with Nafion-CeO2/GCE modified electrode showing a 443 mV peak-to-peak potential difference between species oxidation peak currents.

  相似文献   
6.
Biosynthesis and characterizations of nanoparticles have become an important branch of nanotechnology. In this paper, green synthesis of gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) using the flower extract of Rosa damascena as a reducing and stabilizing agent, has been discussed. This approach is simple, cost-effective and stable for a long time, reproducible at room temperature and in an eco-friendly manner to obtain a self-assembly of AuNPs and AgNPs. The resulting nanoparticles are characterized using UV–vis, TEM, XRD and FT-IR spectroscopic techniques. A modified glassy carbon electrode using AuNPs (AuNPs/GCE) was investigated by means of cyclic voltammetry in a solution of 0.1 M KCl and 5.0×10−3 M [Fe(CN)6]3−/4−. The results show that electronic transmission rate between the modified electrode and [Fe(CN)6]3−/4− increased.  相似文献   
7.
A nanogold modified carbon paste electrode (NG‐CPE) was fabricated and used as selective voltammetric sensor for determination of Tartrazine in the presence of Red 10B using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronoamperometry (CHA). Electrochemical parameters including the diffusion coefficient (D), the electron transfer coefficient (aXXXXX), and the electron transfer number (n) were determined for the oxidation of Tartrazine. This modified electrode can be applied to simultaneous determination of Tartrazine and Red 10B, because of considerable decreases of anodic overpotentials for both compounds. After optimizing the experimental conditions, the anodic peak current of Tartrazine was linear to its concentration in the range of 0.05‐1.5 μmol l?1, and the detection limit was 0.017 μmol l?1 in phosphate buffer solution (PBS) at pH 4.0. The modified electrode has good stability and repeatability. It was applied to the determination of Tartrazine and Red 10B in soft drinks with satisfactory results.  相似文献   
8.
A sensitive and selective preconcentration method has been developed for mercury using naphthalene-methyltrioctylammonium chloride (Aliquat 336s) as an adsorbent. Mercury as HgI42− was retained by the adsorbent in the column at a flow rate of 1 ml min−1. The column was washed by a solution of sodium tetraphenylborate and sodium iodide to elute the adsorbed mercury. The eluents were collected in a 10 ml volumetric flask and diluted to the mark with water, transferred to a voltammetric cell and anodic stripping-differential pulse voltammetry was performed. Preconcentration factors of 40 and 80 could be achieved when using a 10 and 5 ml voltammetric cell, respectively. The calibration graph was linear in the range of 1.2-8.7 ng ml−1 Hg(II) in the initial solution with r=0.9998 (n=6) and the 3 s detection limit was 0.13 ng ml−1 when using a 10 ml cell. The relative standard deviation for eight replicate measurements of 1.2, 5.0 and 8.7 ng ml−1 of Hg(II) in the initial solution was 0.51, 0.71 and 0.80%, respectively. The proposed method was successfully applied to determination of mercury in natural waters, wastewater and synthetic samples.  相似文献   
9.
A carbon paste electrode, modified with N,N′-bis-(2-hydroxy-1-naphthalidene)ethylenediamine and multi-walled carbon nanotubes (HNED-MWCNPE), was used for the determination of acetaminophen (ACOP) and propranolol (PP). Cyclic voltammetry (CV), chronocoulometry, chronoamperometry and differential pulse voltammetry (DPV) techniques were employed to study electro-oxidation of ACOP. The results revealed that the modified electrode showed an electrocatalytic activity toward the anodic oxidation of acetaminophen by a marked enhancement in the current response in buffered solution at pH 8.0. Some kinetic parameters such as the electron transfer coefficient (α) were also determined for the ACOP oxidation. The linear concentration range of 1 × 10?3?1 × 10?6 M with a detection limit of 4.6 × 10?8 M (n = 16) for ACOP was obtained using DPV (pH 8.0). The modified electrode shows good sensitivity, selectivity and stability. The prepared electrode was also applied for the determination of ACOP in human blood serum.  相似文献   
10.
Tyrosine (Tyr) was quantitated with high sensitivity and selectivity in the presence of uric acid (UA) using a carbon paste electrode modified with multi-walled carbon nanotubes. Tyr and UA were catalytically oxidized with diffusion-controlled characteristics. They were determined simultaneously by differential pulse voltammetry with a potential difference of 350 mV. The electrocatalytic currents increase linearly with Tyr and UA concentrations 4×10?7?1×10?4 M and 3×10?7?2×10?4 M. Their detection limits were 1×10?7 and 5.1×10?8 M respectively. In the presence of sodium dodecyl sulfate the Tyr detection limit improved from 1×10?7 to 6.9×10?8 M. The electrode was successfully used to quantitate Tyr and UA in serum.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号