首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
An improved 1 × 4 coupler based on all solid multi-core photonic crystal fiber is proposed and analyzed. The expressions to calculate the coupling length and the coupling efficiency are deduced based on the coupled-mode equations firstly. Then a full-vector finite element method (FEM) is used to calculate the coupling length and the coupling efficiency. Next, the propagation characteristics and the performances of the coupler are analyzed through using a full vector beam propagation method (BPM). Research shows that the results derived by FEM agree with that by BPM. The coupling length of the coupler is 4.1 mm at λ = 1.55 μm. A maximum coupling efficiency of 24.96% can be obtained. The coupling ratio is more than 22.5% over a wavelength range of 100 nm. The polarization-dependent loss at λ = 1.55 μm is equal to 0.73 dB. Finally, the influences of the micro-variation of structure parameters and the material refractive index on the working performances of the coupler are investigated.  相似文献   

2.
设计了一种基于LiNbO_3的长周期波导光栅可调谐耦合器.该耦合器利用长周期光栅的独有特性将输入波导的导模经包层模耦合至输出波导导模.由于LiNbO_3的电光效应,波导光栅芯层与包层的有效折射率随外加电压变化,从而耦合器的谐振波长及耦合效率可由外加电压调谐.分析了光栅周期与耦合器的长度对耦合器带宽和耦合效率调谐范围的影响,以及波导尺寸对谐振波长调谐灵敏度的影响.结果表明光栅周期越短,耦合器长度越长,则耦合器的带宽越窄,耦合效率调谐范围也越大.此外,谐振波长调谐灵敏度随波导宽度的增加而减小,而波导厚度对谐振波长调谐灵敏度的影响可以忽略.对光栅周期为94μm、长度为3.52cm的耦合器进行仿真,结果表明,谐振波长灵敏度为26.2pm/V,3dB带宽可达4.5nm,当外加电压从0变化到200V时,谐振波长变化5.24nm,耦合效率可在1到0.15之间进行调谐.  相似文献   

3.
In this paper, the design and analysis of an ultracompact coupler based on a hybrid silicon plasmonic waveguide (HSPW) is proposed and its coupling and crosstalk characteristics have been theoretically investigated for the development of optical interconnects that can be realized using well-established complementary metal-oxide-semiconductor-compatible fabrication techniques. To determine the minimum horizontal separation distance and efficient coupling length for the designed coupler, the symmetric and antisymmetric supermodes are obtained and their characteristics are studied at a wavelength of 1.55 μm. Efficient light coupling is exhibited by the HSPW coupler with 75 % of power transfer between the two HSPWs with ultrashort coupling length of 2.14 μm when the separation distance is 50 nm. Further, it is shown that the crosstalk is significantly reduced with the insertion of metallic strip between the two HSPWs for realizing highly dense integrated plasmonic circuits.  相似文献   

4.
Sun X 《Optics letters》2007,32(17):2484-2486
A novel class of wavelength-selective coupling photonic crystal fiber (PCF) that operates by a hybrid light-guiding mechanism has been proposed. Different from the traditional PCF coupler operating principle, this fiber coupler shares properties of both the total internal reflection index-guided and the photonic bandgap mechanism. This coupler allows highly accurate control of the filtering wavelength; both bandstop and bandpass filters can be easily implemented. The spectral transmission results demonstrate that the bandpass characteristic of the coupler is very narrow and free of sidelobes. Moreover, the operating wavelength and the coupling length can be continuously tuned by changing the refractive index of the filling material. This research gives a physical insight into the propagation mechanism in the PCF coupler and is crucial for future applications of the proposed device.  相似文献   

5.
A simple single-polarization single-mode (SPSM) photonic crystal fiber (PCF) coupler with two cores is introduced. The full-vector finite-element method (FEM) is applied to analyze the modal interference phenomenon of the even and odd modes of two orthogonal polarizations and the power propagation within the two cores. Meanwhile, the SPSM coupling wavelength range and its corresponding coupling length for different structure parameters are numerically analyzed. The numerical results show that SPSM coupling can be realized with a broad range of wavelength, and the coupling length can be of millimeter magnitude. Moreover, the SPSM coupling wavelength range and the coupling length can be optimized by designing proper mirco-structure parameters of the coupler.  相似文献   

6.
In this paper, the metal-insulator-metal (MIM) plasmonic directional coupler (PDC) with 45° waveguide bends based on surface plasmon polaritons (SPPs) excitation has been analyzed by the finite-difference time-domain (FDTD) numerical method. Effects of the variations of the coupler length and the metal gap thickness on the output powers and the propagation loss at 1550 nm wavelength have been studied. By choosing proper coupler lengths, power splitters with various output power ratios at 1550 nm wavelength and multi/demultiplexers, as some applications of the directional couplers have been proposed and their performances have been simulated.  相似文献   

7.
In this paper, a novel MMI coupler, based on general interference, with tapered waveguide geometry has been proposed for reduction of coupling length. The coupling characteristics and power imbalance of the proposed structure are compared with conventional MMI structures by using a mathematical model based on sinusoidal modes. It is seen that the beat length for tapered MMI coupler with angle of taper ∼1.05° is reduced by ∼24% of that of conventional MMI coupler and the coupling characteristics obtained with the mathematical model, match well with those obtained by more sophisticated BPM computer aided design software. The power imbalance for tapered 3 dB MMI coupler is more sensitive to the wavelength than that for conventional 3 dB MMI coupler and variation of power imbalance with fabrication tolerance for both the MMI coupler is almost same.  相似文献   

8.
A novel highly efficient grating coupler with large filling factor and deep etching is proposed in silicon-on-insulator for near vertical coupling between the rib waveguide and optical fibre.The deep slots acting as high efficient scattering centres are analysed and optimized.As high as 60% coupling efficiency at telecom wavelength of 1550-nm and 3-dB bandwidth of 61 nm are predicted by simulation.A peak coupling efficiency of 42.1% at wavelength 1546-nm and 3-dB bandwidth of 37.6 nm are obtained experimentally.  相似文献   

9.
The design of a fiber coupler for high efficiency light coupling to silicon sandwiched slot waveguides is reported. The proposed fiber coupler is based on the inverted taper approach. Parameters have been optimized to maximize coupling efficiency for λ = 1550 nm and TM polarization. Maximum coupling efficiencies of 93% for a inverted taper length of 150 μm and a inverted taper tip width of 40 nm have been obtained by means of the overlap integral and 3D beam propagation method (BPM) simulations.  相似文献   

10.
双芯光子晶体光纤宽带定向耦合器研究   总被引:3,自引:2,他引:1  
利用半矢量有限差分法设计了具有低折射率双芯的光子晶体光纤宽带定向耦合器,并数值计算了双芯光子晶体光纤的结构参量对耦合性能的影响.数值结果表明,通过优化选取光子晶体光纤包层结构参量和纤芯掺杂浓度,双芯光子晶体光纤耦合器可以实现宽带耦合.在1.22~1.65 μm 波长范围内其耦合长度稳定在26637 nm±235 nm范围内,耦合器设计成耦合比为50%和10%,分别实现了耦合比为(50±0.702)%和(10±0.664)%的良好特性.  相似文献   

11.
提出了一种基于金线填充的双芯光子晶体光纤超短偏振分束器,并进行了有限元分析.金线表面激发的表面等离子激元与双芯光子晶体光纤纤芯模之间的强烈耦合,导致更短的偏振分束器长度和更大的工作带宽.与同类的偏振分束器相比,所提出的偏振分柬器能同时实现较短的长度和较高的消光比.数值结果表明,长度为0.263 mm的偏振分束器,在波长1.55 μm处消光比达-70 dB,-20 dB消光比带宽为124 nm.  相似文献   

12.
We developed a fused fiber coupler (FFC) capable of multiplexing wavelengths in the range of 795 nm and 2 μm. A simple 2D simulation model to calculate the pretaper length for matching the propagation constants in the coupling region was established. Based on the numerical data, we fabricated an asymmetric FFC consisting of two different fibers with single-mode guidance for the respective wavelength, achieving a transmission of 90% in the signal fiber for both wavelengths. In order to demonstrate the application, we integrated the FFC into a core pumped thulium-doped fiber amplifier.  相似文献   

13.
冯丽爽  许光磊  李菲 《光学技术》2007,33(2):202-205
波导耦合器是组成光纤传感系统和光纤通信系统光收发组件及模块的重要元器件,是实现光收发模块一体化光电集成的基础。给出了一种用光纤陀螺系统的X型四端口波导耦合器的工作原理,采用有效折射率法和BPM(Beam propagation method)法建立了耦合器的数学模型,计算并分析了耦合器尺寸在尽可能小的情况下和在满足单模传输的条件下耦合器的耦合系数、有效耦合长度、分光比以及回波损耗等参数之间的关系,并对其关键技术进行了系统的研究。仿真结果表明,所设计的波导耦合器在低损耗情况下分光比可达到50%∶50%,耦合器全长为33.5mm,输入输出波导间距为410μm,芯层截面积为6μm×6μm。  相似文献   

14.
The effect of interstitial air holes on Bragg gratings in photonic crystal fibre (PCF) with a Ge-doped core is numerically investigated by using the beam propagation method (BPM). It is shown that the interstitial air holes (IAHs) can make Bragg resonance wavelength λB shift a little towards short wavelengths and increase λB1 (the wavelength spacing between the main peak with Bragg resonance wavelength λB and the first side peak with wavelength λ1 and the coupling coefficient к of Bragg resonance. Moreover, when the ratio of air hole diameter (d) to pitch (Λ), d/Λ, is small, IAHs can suppress the cladding mode resonance. When d/Λ is large, IAHs increase the number of mode that could strongly interact with the fundamental mode. By comparing the transmission spectral characteristics of PCF-based fibre Bragg grating (FBG) with IAHs with those without IAHs at the same air-filling fraction, it is clarified that the change of transmission spectral characteristics of PCF-based FBG with IAHs is not due to a simple change in air-filling fraction. It is also closely related to the distribution of interstitial air holes.  相似文献   

15.
跑道型结构光子晶体波导定向耦合器   总被引:3,自引:3,他引:0  
鉴于波导定向耦合器在集成光路以及光电集成方面的广泛应用,提出了一种基于光子晶体波导间高效耦合的光子晶体定向耦合器。通过主波导和耦合波导间的耦合,可以实现对波长为1 490 nm和1 550 nm电磁波的高效分光。在将器件长度控制在30 μm左右的同时,其总效率高达93.05%。另外,发现主波导和耦合波导间介质柱结构参数对电磁波的耦合周期有着极大的影响。并通过将介质柱沿z方向拉伸0.1a(a为晶格周期),设计了工作波长为1 530 nm和1 540 nm的光子晶体定向耦合器,器件长度仅为60 μm。通过拉伸介质柱的纵向长度,可以大幅减小耦合周期,这对缩小器件体积以及实现更为密集的波分复用有着重要的意义。  相似文献   

16.
提出一种基于夹层结构的偏振无关1×2定向耦合型解复用器,用于分离1310 nm和1550 nm两个波长.通过合理选择夹层结构芯区的折射率及波导间隙,可以调节同一波长两个正交偏振模的耦合长度相等,实现偏振无关;通过合理选择夹层结构波导宽度,可以使两个波长分别从不同输出波导端口输出,实现解复用功能.运用三维有限时域差分法进行建模仿真,对结构参数进行优化,并对器件性能进行了分析.结果表明:该器件定向耦合波导的长度为23μm,插入损耗低至0.1 dB,输出波导间的串扰低至–26.23 dB,3 dB带宽可达290 nm和200 nm.另外,本文提出的器件采用Si3N4/SiO2平台,可有效减小波导尺寸,提高集成度,不仅实现了偏振无关,而且结构紧凑、损耗低,在未来的集成光路中具有潜在的应用价值.  相似文献   

17.
The coupling and radiation characteristics of an improved dielectric waveguide directional coupler with a tapering left-handed slab core located in the coupling region are analyzed by the staircase approximation method, which combines the building block approach and multi-mode network theory with a rigorous mode-matching procedure. Particular attentions are directed toward the radiation characteristics under different structural parameters of the coupler. Numerical results indicate that the proposed coupler is very promising by shortening the coupling length significantly while keeping the radiation loss at a low level.  相似文献   

18.
A mismatched optical coupler with waveguide weighted by the Blackman function is numerically investigated in the demand of short length, C+L-band, and low crosstalk. Utilizing the full factorial design, the structure parameters of coupling waveguide are obtained by beam propagation method. In the condition of crosstalk of −35 dB, the mismatched optical coupler with proper selected waveguide structure parameters is found to have a coupling length of 3.60 mm in the transmission wavelength ranges of C+L-band (1.53-1.61 μm). Obviously, the selection and design of waveguide structure are very important to satisfy the qualities of a mismatched optical coupler for the demand of short length, broad bandwidth, and low crosstalk.  相似文献   

19.
We have developed an integrated multiwavelength laser with waveguide couplers using a novel selective metal-organic vapor-phase epitaxy (MOVPE) technique. The lasing wavelength was controlled by modulating the effective refractive index of distributed Bragg reflector (DBR) waveguides. Array lasing wavelengths were distributed from 1548.0 to 1553.5 nm with an average spacing of 1.8 nm. The propagation loss of the waveguide coupler was about 16 dB for inner ports and 20 dB for outer ports with a 6 dB splitting loss. Four-wavelength laser outputs were coupled into a single-mode fibre.  相似文献   

20.
A novel diode-pumped Nd:YAG laser system that employs a fixed active laser medium and a pair of quick-change output couplers on a precision linear stage for 1064 or 532 nm wavelength generation is presented. Fixed elements include a rear mirror, an acousto-optical Q-switch, and a diode-pumped solid-state laser (DPSSL). Movable elements for 1064 nm generation include an intra-cavity aperture as a mode selection element (MSE) and an output coupler. Movable elements for 532 nm generation include an intra-cavity frequency conversion with KTP, an intra-cavity aperture as a mode selection element (MSE), and an output coupler. Under stable operating conditions, the 1064 nm configuration produced a beam propagation ratio of 1.18 whereas the 532 nm configuration produced a beam propagation ratio of 1.1, both of which used an intra-cavity MSE with an aperture of 1.2 mm and a length of 5 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号