首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a canonical dual mixed finite element method for the post-buckling analysis of planar beams with large elastic deformations. The mathematical beam model employed in the present work was introduced by Gao in 1996, and is governed by a fourth-order non-linear differential equation. The total potential energy associated with this model is a non-convex functional and can be used to study both the pre- and the post-buckling responses of the beams. Using the so-called canonical duality theory, this non-convex primal variational problem is transformed into a dual problem. In a proper feasible space, the dual variational problem corresponds to a globally concave maximization problem. A mixed finite element method involving both the transverse displacement field and the stress field as approximate element functions is derived from the dual variational problem and used to compute global optimal solutions. Numerical applications are illustrated by several problems with different boundary conditions.  相似文献   

2.
This paper presents a pure complementary energy variational method for solving a general anti-plane shear problem in finite elasticity. Based on the canonical duality–triality theory developed by the author, the nonlinear/nonconvex partial differential equations for the large deformation problem are converted into an algebraic equation in dual space, which can, in principle, be solved to obtain a complete set of stress solutions. Therefore, a general analytical solution form of the deformation is obtained subjected to a compatibility condition. Applications are illustrated by examples with both convex and nonconvex stored strain energies governed by quadratic-exponential and power-law material models, respectively. Results show that the nonconvex variational problem could have multiple solutions at each material point, the complementary gap function and the triality theory can be used to identify both global and local extremal solutions, while the popular convexity conditions (including rank-one condition) provide mainly local minimal criteria and the Legendre–Hadamard condition (i.e., the so-called strong ellipticity condition) does not guarantee uniqueness of solutions. This paper demonstrates again that the pure complementary energy principle and the triality theory play important roles in finite deformation theory and nonconvex analysis.  相似文献   

3.
IntroductionAccordingtothedifferenceofindependentvariable,alltheproposedfiniteelementmodelscanbedividedintofiveclasses:1 )Displacementmodel[1- 4],whichassumesdisplacementiscontinuousintheentirefield ;2 )Equilibriummodel[4 ],whichassumesstressisbalanceoneachelem…  相似文献   

4.
A parametric variational principle and the corresponding numerical algo- rithm are proposed to solve a linear-quadratic (LQ) optimal control problem with control inequality constraints. Based on the parametric variational principle, this control prob- lem is transformed into a set of Hamiltonian canonical equations coupled with the linear complementarity equations, which are solved by a linear complementarity solver in the discrete-time domain. The costate variable information is also evaluated by the proposed method. The parametric variational algorithm proposed in this paper is suitable for both time-invariant and time-varying systems. Two numerical examples are used to test the validity of the proposed method. The proposed algorithm is used to astrodynamics to solve a practical optimal control problem for rendezvousing spacecrafts with a finite low thrust. The numerical simulations show that the parametric variational algorithm is ef- fective for LQ optimal control problems with control inequality constraints.  相似文献   

5.
梁立孚  罗恩  冯晓九 《力学学报》2007,39(1):106-111
明确了分析力学初值问题的控制方程,按照广义力和广义位移之间的对应关系,将 各控制方程卷乘上相应的虚量,代数相加,进而在 原空间中建立了分析力学初值问题的一种变分原理形式,即建立了分析力学初值问题的卷积 型变分原理和卷积型广义变分原理. 推导了分析力学初值问题卷积型变分原理和卷积型广义 变分原理的驻值条件. 在建立分析力学初值问题的一种变分原理形式的同时, 将变积方法推广为卷变积方法.  相似文献   

6.
对于包含接触约束的非光滑结构优化问题,其非光滑性体现在状态函数并不是处处可微的,针对含有应力约束及接触约束的非光滑结构优化问题,建立了一种双层规划模型,避免了求解时非光滑性所带来的问题,同时提出了一种迭代算法,用对偶内点二次规划进行分析,线性规划进行优化,算例表明这种方法十分有效。  相似文献   

7.
The method developed in this paper is inspired by the viewpoint in ref. [1] that sufficient attention has not been paid to the value of the generalized variational principle in dealing with the boundary conditions in the finite element method. This method applies the generalized variational principle and chooses the series constituted by spline function multiplied by sinusoidal function and added by polynomial as the approximate deflection of plates and shells. By taking the deflection problem of thin plate, it shows that this method can solve the coupling problem in the finite element-semianalytical method. Compared with the finite element method and finite stripe method, this method has much fewer unknown variables and higher precision. Hence, it proposes an effective way to solve this kind of engineering problems by minicomputer.  相似文献   

8.
电磁波导的奇异元与对偶有限元分析   总被引:1,自引:1,他引:1  
基于电磁波导的对偶变量变分原理以及Hamilton正则方程,将含有奇异性的电磁场问题导入Hamilton体系下进行分析,通过分离变量及共轭辛本征函数向量展开法,构造出可以表征电磁场奇异性的奇异解析元。奇异元的采用克服了普通单元处理含有导电劈和介质楔的波导问题的困难,同时能够方便地与电磁对偶元相结合,保持了有限元方法的灵活性,具有较高的精度。  相似文献   

9.
Gao  David Yang 《Meccanica》1999,34(3):167-196
This paper presents a nonlinear dual transformation method and general complementary energy principle for solving large deformation theory of elastoplasticity governed by nonsmooth constitutive laws. It is shown that by using this method and principle, the nonconvex and nonsmooth total potential energy is dual to a smooth complementary energy functional, and fully nonlinear equilibrium equations in finite deformation problems can be converted into certain tensor equations. The algebraic relation between the first and the second Piola–Kirchhoff stresses are revealed. A closed form solution for general three-dimensional large deformation boundary value problems is obtained. The properties of this general solution are clarified by a triality extremum principle. This triality theory reveals an important phenomenon in nonconvex variational problems. Applications are illustrated by nonlinear, nonsmooth equilibrium problems in Hencky's plasticity, 3D cylindrical structures and post buckling analysis of elastoplastic bar with jumping and hardening effects. The idea and methods presented in this paper can be used and generalized to solve many nonlinear boundary value problems in finite deformation theory.Sommario. Il lavoro presenta un metodo di trasformazione duale nonlineare ed un principio generale di energia complementare per la soluzione di problemi di teoria elastoplastica in grandi deformazioni governati da leggi costitutive con discontinuità. Si mostra come, usando il metodo ed il principio proposti, l' energia potenziale totale discontinua e nonconvessa duale di un funzionale energia complementare continuo, e le equazioni di equilibrio nonlineare in problemi di deformazione finita, possano essere convertite in equazioni tensoriali. Vengono mostrate le relazioni algebriche fra il primo ed il secondo tensore delle tensioni di Piola–Kirchhoff. Si ottiene una soluzione in forma chiusa per problemi al contorno generali tridimensionali in grandi deformazioni. Le proprietà di tale soluzione generale vengono chiarite per mezzo di un principio estremale di trialità. La eoria della trialità evidenzia un fenomeno importante in problemi variazionali nonconvessi. Vengono presentate applicazioni a problemi di equilibrio nonlineare con discontinuità in situazioni di plasticità alla Hencky, strutture cilindriche in 3D, e nell'analisi postcritica di una barra elastoplastica con effetti hardening e di jumping. L'idea ed i metodi presentati in questo lavoro possono essere usati e generalizzati per risolvere molti problemi al contorno nonlineari nella teoria delle deformazioni finite.  相似文献   

10.
不连续介质力学分析的块体-夹层模型   总被引:8,自引:0,他引:8  
张雄 《力学学报》1997,29(3):323-331
基于岩体等不连续介质的实际结构特征,利用约束变分原理,建立了可同时用于不连续介质和连续介质力学分析的块体 夹层模型.该方法利用拉格朗日乘子法和罚函数法把单元间的连续条件作为约束条件引入泛函中,把不连续介质问题和连续介质问题统一处理,既能方便地求解连续介质力学问题,更重要的是能方便地处理不连续介质力学问题,如岩体结构.由块体 夹层模型可导出刚性有限元和弹性有限元(常应变元)的列式,而且块体的形状可以是任意多边形  相似文献   

11.
We propose an approach to the definition and analysis of material instabilities in rate-independent standard dissipative solids at finite strains based on finite-step-sized incremental energy minimization principles. The point of departure is a recently developed constitutive minimization principle for standard dissipative materials that optimizes a generalized incremental work function with respect to the internal variables. In an incremental setting at finite time steps this variational problem defines a quasi-hyperelastic stress potential. The existence of this potential allows to be recast a typical incremental boundary-value problem of quasi-static inelasticity into a principle of minimum incremental energy for standard dissipative solids. Mathematical existence theorems for sufficiently regular minimizers then induce a definition of the material stability of the inelastic material response in terms of the sequentially weakly lower semicontinuity of the incremental variational functional. As a consequence, the incremental material stability of standard dissipative solids may be defined in terms of the quasi-convexity or the rank-one convexity of the incremental stress potential. This global definition includes the classical local Hadamard condition but is more general. Furthermore, the variational setting opens up the possibility to analyze the post-critical development of deformation microstructures in non-stable inelastic materials based on energy relaxation methods. We outline minimization principles of quasi- and rank-one convexifications of incremental non-convex stress potentials for standard dissipative solids. The general concepts are applied to the analysis of evolving deformation microstructures in single-slip plasticity. For this canonical model problem, we outline details of the constitutive variational formulation and develop numerical and semi-analytical solution methods for a first-level rank-one convexification. A set of representative numerical investigations analyze the development of deformation microstructures in the form of rank-one laminates in single slip plasticity for homogeneous macro-deformation modes as well as inhomogeneous macroscopic boundary-value problems. The well-posedness of the relaxed variational formulation is indicated by an independence of typical finite element solutions on the mesh-size.  相似文献   

12.
This paper outlines a new variational-based modeling and computational implementation of macroscopic continuum magneto-mechanics involving non-linear, inelastic material behavior, with a special focus on dissipative magnetostriction. It is based on a constitutive variational principle that optimizes a generalized incremental work function with respect to the internal state variables. In an incremental setting at finite time steps, this variational problem defines a quasi-hyper-magnetoelastic potential for the stresses and the magnetic induction, and incorporates energy storage as well as dissipative mechanisms. The existence of this potential further allows the incremental boundary-value problem of quasi-static inelastic magneto-mechanics to be recast into a principle of stationary incremental energy. The second focus of this paper is on the careful construction of the energy storage and dissipation functions for the model problem of hysteretic magnetostriction at the macroscopic level. It is then demonstrated that the proposed model is capable of predicting the ferromagnetic and field-induced strain hysteresis curves characteristic of magnetostrictive material response in good agreement with experiments. The numerical solution of the coupled non-linear boundary-value problem is based on a monolithic multi-field finite element implementation. As a consequence of the proposed incremental variational principle, the discretization of the multi-field problem appears in a compact symmetric format. In this sense, the proposed formulation provides a canonical framework for the simulation of boundary-value-problems in dissipative magnetostriction at the macro-level. The performance of the proposed algorithm is tested by application to relevant numerical examples.  相似文献   

13.
Reviewed in this work are the methods of finite and boundary element as applied to solve fracture mechanics problems. The former requires the discretization of the interior of the domain while the latter involves computing an integral equation over the boundary of the domain. Applications of these methods are made to two-dimensional elastic crack problems. Efficiency and accuracy of different approaches are discussed and compared by examples. The boundary element procedure employing special Green's functions for the plane crack problem is shown to be superior. The correlation between the hybrid element formulations and boundary element regions embedded into a finite element model is also given.  相似文献   

14.
弹性力学轴对称问题的有限元线法   总被引:1,自引:0,他引:1  
给出了解弹性力学空间轴对称问题的有限元线法的基本理论。该法包括了2-4条结线的等参数单元,沿结线方向的两点边值问题采用插值矩阵法解之。算例表明,本法具有良好的收敛性和较高的计算精度。  相似文献   

15.
分离变量法与哈密尔顿体系   总被引:4,自引:0,他引:4  
数学物理与力学中用分离变量法求解偏微分方程经常导致自共轭算子的sturmLiouville问题,在此基础上而得以展开求解。然而在应用中有大量问题并不能导致自共轭算子。本文通过最小势能变分原理,选用状态变量及其对偶变量,导向一般变分原理。利用结构力学与最优控制的模拟理论,导向哈密尔顿体系。将有限维的理论推广到相应的哈密尔顿算子矩阵及共轭辛矩阵代数的理论。拓广了经典的分离变量法,证明了全状态本征函数向量的共轭辛正交归一性质及按本征函数向量展开的理论。以条形板为例,说明了应用。  相似文献   

16.
The random variational principle and finite element method   总被引:1,自引:1,他引:0  
In this paper, we introduced the random materials, geometrical shapes, force and displacement boundary condition directly into the functional variational formulations and developed a unified random variational principle and finite element method with the small parameter perturbation method. Numerical examples showed that the methods have the advantages of the simple and convenient program implementation, and are effective for the random mechanics problems.  相似文献   

17.
根据多级配骨料混凝土特点,给出了一种迭代多尺度有限元方法预测其等效力学参数。本文首先介绍了多级配骨料混凝土的材料特点并给出了计算混凝土多尺度模型,然后基于多尺度方法介绍了计算混凝土力学参数的计算程序,最后针对小湾大坝中混凝土给出了算例说明了此种方法在预测混凝土等效力学参数的有效性。  相似文献   

18.
The Scope of this paper is to develop the basic equations for a variational formulation which can be used to solve problems related to convection and/or diffusion dominated flows. The formulation is based on the introduction of a generalized quantity defined as the hear displacement. The governing equation is expressed in terms of this quantity and a variational formulation is developed which leads to a system of equations similar in form to Lagrange's equations of mechanics. These equations can be used for obtaining approximate solutions, though they are of particular interest for application of the finite element method. As an example of the formulation two finite element models are derived for solving convectiondiffusion boundary value problems. The performance of the two models is investigated and numerical results are given for different cases of convection and diffusion with two types of boundary conditions. The applications of the developed formulations are not limited to convection-diffusion problems but can also be applied to other types of problems such as mass transfer, hydrodynamics and wave propagation.  相似文献   

19.
将线性蠕变的控制方程做摄动展开,用加权余量法和二类变量的变分原理,引入有限元线和Hamilton混合状态元技术,建立了两种求解缄性蠕变问题的摄动增解析计算格式。  相似文献   

20.
Based on the Hamiltonian governing equations of plane elasticity for sectorial domain, the variable separation and eigenfunction expansion techniques were employed to develop a novel analytical finite element for the fictitious crack model in fracture mechanics of concrete. The new analytical element can be implemented into FEM program systems to solve fictitious crack propagation problems for concrete cracked plates with arbitrary shapes and loads. Numerical results indicate that the method is more efficient and accurate than ordinary finite element method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号