首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
激光诱导击穿光谱(LIBS)是一种动态光谱。时间分辨LIBS光谱测量是研究激光诱导等离子体演化和谱线自吸收的重要技术。结合激光诱导击穿光谱测量的时序特性,提出一种利用常规性能光谱探测设备获得微秒级时间分辨LIBS光谱的测量方法。通过控制毫秒级光谱探测设备的积分延迟时间,获得不同延时下的LIBS光谱信号,对所得光谱进行处理得到相应特征谱线拟合强度,将所测的特征谱线强度按照一定的时间间隔进行差分,得到差值即为差分间隔时间内特征谱线的积分强度。采用差分时间间隔应大于系统最差时序精度,同时优选无重叠干扰和背底连续的谱线信号进行分析。以等离子体产生后持续时间为横坐标,计算所得谱线差值强度为纵坐标,即可获得特征谱线的强度演化曲线。通过实验验证,使用积分时间为毫秒量级光谱仪和时序精度为0.021微秒控制系统,该方法可以实现微秒量级时间分辨LIBS光谱测量,可用于表征LIBS光谱特征谱线演化过程,降低了LIBS光谱时间分辨测量系统成本。  相似文献   

2.
将激光诱导击穿光谱技术(LIBS)应用于煤粉颗粒流的直接检测,利用自行搭建的颗粒流实验台架重点研究不同收光角度下煤粉颗粒的等离子体光谱特性,分析煤中具有代表性的C,Si和Al三种元素原子谱线的强度及其相对标准偏差的变化规律,结果表明收光角度在30°~45°区间时收集到的等离子体信号强且稳定。  相似文献   

3.
飞灰含碳量是评价锅炉燃烧效率的重要指标之一,对其进行在线测量有助于实时进行燃烧优化调整,从而提高整个机组的经济性和安全性。利用螺杆式给粉机搭建飞灰颗粒流含碳量测量台架,将脉冲激光直接作用于飞灰颗粒流,形成等离子体,利用激光诱导击穿光谱技术测量飞灰颗粒流中的含碳量信息。重点研究了激光能量对飞灰颗粒流中未燃碳有效激发和测量的影响规律。研究结果显示,在40~130 mJ能量的脉冲激光作用下,碳谱线强度随着激光能量的增大线性增强,而其信噪比则先增加后趋于稳定,无效光谱的剔除率则呈下降趋势。本实验条件下,激光能量在90~100 mJ之间,可得到较强的等离子体发射信号和较优的光谱数据利用率。因而激光能量与颗粒流的激发状态、碳元素特征谱线强度等密切相关。合理的激光能量有利于保证飞灰颗粒流的有效稳定激发,并获得具有良好信噪比的等离子体光谱信号。  相似文献   

4.
激光诱导击穿光谱(LIBS)技术是近二十几年发展起来的一种新型材料识别及定量分析技术,它具有操作简单、迅速、可多元素同步检测、对样品几乎无损耗等优点。传统的LIBS技术发射光谱谱线强度弱,导致检测精度低。在样品表面施加腔体约束或者沉积纳米颗粒可以大幅地增强等离子体发射光谱强度,同时检测精度以及定量分析时的准确度均可以得到有效提高。而等离子体的存活时间十分短暂,通常在1~10μs之间。采集时间延迟过短会连同背景噪声一同采集,采集延迟时间过长则有可能导致采集到的光谱强度低,因此选择合适的采集延迟时间来获取光谱数据至关重要。为了研究腔体约束和纳米粒子共同作用下激光诱导击穿光谱时间演化问题,对烧蚀合金样品产生的等离子体,采集延迟时间为0.5~5μs时等离子体时间分辨光谱。选择NiⅡ221.65 nm, CⅠ193.09 nm作为目标研究谱线,分析采集延迟时间变化对谱线强度、增强因子、信噪比等参数的影响。实验结果表明:在未加约束,腔体约束激光诱导击穿光谱(cavity confinement LIBS,CC-LIBS)、纳米粒子增强激光诱导击穿光谱(nanoparticle enhancement LIBS,NELIBS)以及两种情况共同作用下,随着采集延迟时间的增加,光谱强度均依次降低;在施加腔体约束时,采集延迟时间大于2μs后谱线强度变得很低;当表面沉积纳米粒子时,采集延迟时间大于3μs仍可以收集到可观数量的等离子体。当采集延迟时间为1μs时,双重作用下的增强因子最高,可达2.1。而当有腔体约束参与时,在采集延迟时间大于3μs后光谱强度比未加约束时更低;当只有纳米颗粒沉积时,信噪比最优,达到9.52;双重作用下信噪比的变化趋势与只有腔体约束时的变化趋势基本相同。纳米颗粒在整个采集延迟时间范围内都有助于检测样品中微量元素,而腔体约束在延迟时间大时对微量元素的检测起抑制作用。  相似文献   

5.
考察了大气环境下激光诱导击穿光谱适用于煤粉流多元素同时检测的激光能量范围,分析了造成煤粉流测量谱线信号波动的原因,得到了适用于煤粉流多元素同时检测的激发区域功率密度范围和最佳功率密度。实验选取能量范围为20~160 mJ,粒径小于200 μm煤粉颗粒经下料口自由下落形成煤粉流束,通过螺杆式给粉机控制流量,波长1 064 nm脉冲激光聚焦后作用于下降的煤粉流束上,产生等离子体,光谱仪采集等离子体发射光谱信号,分析结果表明:实验台架下适于煤粉流LIBS检测的能量范围为30~60 mJ,对应激发前沿功率密度选取范围14.4~34.4 GW·cm-2,最佳测量功率密度19.5 GW·cm-2。  相似文献   

6.
我国电站入炉煤种复杂多变,实时快速获取煤质成分对保障锅炉的安全、高效、低污染运行具有重大意义。将激光诱导击穿光谱(LIBS)技术应用于燃煤煤质测量,观测了不同波长激光(355,532和1 064 nm)诱导产生的等离子体时间演变特性和不同电离特性元素的谱线时间特性,对比了出现屏蔽效应时的能量阈值随激光波长的变化特征,并研究了激光波长对煤LIBS光谱特性的影响规律。结果发现:使用532 nm激光作为激发光源时,煤LIBS光谱具有最强的谱线信号强度,且出现等离子体屏蔽效应的能量阈值也较高,是一种较理想的激发光源,为LIBS技术在煤质测量领域的工业应用提供了实验依据。  相似文献   

7.
基于自行研制的新型液体射流的激光诱导击穿光谱(LIBS)实验装置,研究了实验条件(如积分延时、脉冲间隔、激光能量等)对K元素单脉冲LIBS和双脉冲LIBS等离子发射的影响.实验得知相对单脉冲激光激发,双脉冲激光激发可以显著提高等离子体发射谱线强度,增加谱线强度的衰减时间,提高LIBS数据的稳定性.通过最佳实验条件下K766.49nm谱线强度随溶液浓度的分析,得到该实验系统中,双脉冲激光激发时K元素的检测灵敏度和检测限约是单脉冲激光激发时的37倍.实验结果为双脉冲LIBS技术应用于水体金属的检测提供了一定依据.  相似文献   

8.
基于自行研制的新型液体射流的激光诱导击穿光谱(LIBS)实验装置,研究了实验条件(如积分延时、脉冲间隔、激光能量等)对K元素单脉冲LIBS和双脉冲LIBS等离子发射的影响.实验得知相对单脉冲激光激发,双脉冲激光激发可以显著提高等离子体发射谱线强度,增加谱线强度的衰减时间,提高LIBS数据的稳定性.通过最佳实验条件下K766.49nm谱线强度随溶液浓度的分析,得到该实验系统中,双脉冲激光激发时K元素的检测灵敏度和检测限约是单脉冲激光激发时的37倍.实验结果为双脉冲LIBS技术应用于水体金属的检测提供了一定依据.  相似文献   

9.
作为温室气体的主要成分,CO_2的排放控制有利于应对全球气候变暖以及生态环境变化,对CO_2的快速检测具有重要意义。目前检测CO_2的方法有滴定法,电化学法,气相色谱法,红外吸收光谱法等,但对应用于工业现场的在线监测还存在着不足。激光诱导击穿光谱(LIBS)具有远程测量,无需或仅需简单预处理,多组分同步测量等优点,本文提出将其应用于CO_2在线监测,期望发展适用于工业过程碳排放的在线监测技术。利用质量流量控制器控制纯度为99.99%的CO_2和N2配比形成不同CO_2浓度的混合气体模拟烟气环境,经过混气瓶充分混合后送入密封样品池进行LIBS测量实验。研究不同延迟时间下C247.86nm和CN38.34nm谱线的演化规律,验证了等离子体形成过程中存在部分CO_2分子解离反应生成CN分子,在CO_2定量分析时应考虑CN分子谱线的影响,并获得同步测量C原子和分子谱线的最佳延迟时间为800ns。在此基础上,由于等离子体演化过程中,各种信息相互影响,分析指标与多个测量参数存在关系,综合考虑C原子、CN碎片及修正高浓度影响下的自吸收效应,采用多元回归分析方法建立了CO_2定量分析曲线,其拟合度R~2和斜率分别达到了0.978和0.981,结果表明相比单个指标直接定标,该方法提高了定量分析模型的可靠性,验证了LIBS技术快速测量CO_2的可行性。  相似文献   

10.
为了消除LIBS实际测量光谱谱线与标准的LIBS光谱谱线间存在的差值,提高元素测量精准度,提出了针对激光诱导击穿光谱测量偏差的物理影响因素研究。实验在相同条件下,对烧蚀孔效应和光谱波长的关系进行了测试,研究了激光诱导击穿光谱高温Mg等离子体在1.00~3.00 μs范围采样延时下的斯塔克(Stark)展宽数据,从而得出烧蚀孔效应和斯塔克延时展宽等物理因素对采集光谱造成的具体影响。研究结果及方法完全可以应用于其他激光诱导击穿光谱实验系统的误差分析,这对于提高LIBS技术的物质元素测量精准度,研究LIBS技术的最佳采样延时时间,具有重要意义。  相似文献   

11.
针对激光诱导击穿光谱技术(LIBS)中等离子体的发射光谱增强问题,提出一种磁场增强LIBS与纳米颗粒增强LIBS(NELIBS)相结合的方法。采用热蒸发法在样品表面沉积一层直径20 nm的金纳米颗粒。利用波长为1 064 nm,最大能量为200 mJ的Nd∶YAG脉冲激光器在室温,一个标准大气压下对纯铜和黄铜进行诱导击穿。调整激光能量为30~110 mJ,分别使用传统LIBS、磁场增强LIBS、NELIBS以及两种方法结合对纯铜进行激光诱导击穿,得到特征谱线(Cu Ⅰ 521.8 nm)的强度增强因子和信噪比,并对其增强机理进行分析。在相同环境下使用四种方式对黄铜和纯铜进行诱导击穿以探测样品中的微量元素。当在样品表面沉淀金纳米颗粒或者将沉淀有金纳米颗粒的样品放在磁场中进行诱导击穿时,发现纯铜样品的光谱中存在Mg元素的特征谱线Mg Ⅱ 279.569 nm,黄铜样品的光谱中存在Si元素的特征谱线 Si Ⅰ 251.611 nm。实验结果表明:单独施加磁场约束或增加纳米金颗粒均可以有效增强等离子体光谱强度,但增强效果弱于两种方法结合,磁场约束对光谱的增强效果弱于NELIBS的增强效果。当结合NELIBS与磁场约束LIBS时,谱线增强因子最高可达14.3(Cu Ⅰ 521.8 nm),相比于磁场增强LIBS和NELIBS,最大增强因子分别提高了28%和59%。四种情况中当激光脉冲能量逐渐增大时,等离子体向外膨胀的强度增大,磁场产生的洛伦兹力束缚等离子的能力相对减弱,同时纳米金颗粒对等离子体发射光谱的增强作用被削弱,谱线强度降低,等离子体的增强因子逐渐减小后趋于稳定。通过NELIBS与磁场约束LIBS结合方式,不仅可以有效提高等离子体的发射谱线强度,改善光谱信号信噪比,而且传统LIBS方法中由于谱线强度低、背景噪声大而无法探测的微量元素可以被探测到,LIBS技术对微量元素的探测能力得到显著提高,微量元素的探测下限变得更低。NELIBS与磁场约束LIBS结合的方法具有更高的灵敏度和准确度,为激光诱导击穿光谱技术的谱线增强方法提供了新的思路,在该领域具有广阔的应用前景。  相似文献   

12.
利用Nd:YAG脉冲激光器(1064nm)作为光源,以高分辨率、宽光谱段的中阶梯光栅光谱仪和ICCD为谱线分离与探测器件,测量并分析了土壤中铜元素激光诱导击穿光谱特性。以铜的327.396nm特征谱线作为分析线,在同一浓度下,固定探测器门宽,通过调节延迟时间,得到铜元素的衰变特性,确定了铜元素的最佳延迟时间为1.1μs。测定不同铜浓度下的特征谱线强度,表明在低浓度下,谱线强度随浓度的增加而增大。文章给出了铜元素的定标曲线,并计算得到铜元素的检测限为13.36μg·g-1。  相似文献   

13.
在燃煤电厂,飞灰含碳量是直接反映锅炉燃烧效率的重要指标,控制含碳量水平和低氮燃烧之间的平衡要求实现含碳量的在线(或快速)检测。将激光诱导击穿光谱技术应用于飞灰含碳量的快速测量,针对测量中248 nm附近的C和Fe谱线干扰问题,提出了利用Fe谱线修正的方法以提取重叠峰中C谱线的积分强度,对比分析了Fe 248.33 nm, Fe 254.60 nm和 Fe 272.36 nm谱线分别作为Fe 247.98 nm的修正谱线时提取的C修正积分强度对飞灰含碳量定标曲线和未知样品重复测量精确度的影响。研究结果表明,对C和Fe谱线干扰进行强度修正可以提高含碳量定标曲线的拟合度,并且可以显著改善低含碳量样品重复测量的精确度。但同时需要注意用于修正的Fe谱线的合理选取,防止在对低含碳量样品中C谱线强度的过度修正。从定标曲线和重复测量精确度总体评价而言,Fe 254.60 nm谱线最适用于LIBS测量飞灰含碳量时的C和Fe谱线干扰的修正。  相似文献   

14.
激光诱导击穿光谱技术(LIBS)作为一种新型光谱分析方法,近年来被逐渐应用于燃烧诊断领域。在甲烷/空气混合气中建立了一套LIBS测试系统,利用H,O,N不同特征谱线强度比实现了对甲烷、空气燃空当量比的定量测量。在"门控"模式下,比较分析了H656/O777与H656/N746这两种定标曲线对燃空当量比的测量效果,发现H656/O777可以实现更好的预测精度与更高的灵敏度;"非门控"模式可以利用更多的谱线强度比(H656/O777,H656/N+500,H656/N+567和H656/N746)进行标定测量,其中H656/O777的测试效果最好。比较分析了"门控"与"非门控"两种检测模式对标定测量的影响:"门控"检测模式在拟合优度与预测精度方面都要略优于"非门控"模式。此外,在保持聚焦点能量密度相同的情况下,研究了1 064,532和355nm三种不同激光波长对H,O和N特征谱线及H656/O777标定曲线斜率的影响:H,O和N特征谱线强度、信噪比以及H656/O777标定曲线的斜率均随激光波长的增加而增加。在三种波长中,1 064nm的激光最适合作为LIBS技术的光源,定量测量甲烷/空气混合气当量比。最后,分别从等离子体电子密度、温度对谱线强度与分布函数的影响方面,对以上实验结果给出理论上分析与说明。  相似文献   

15.
激光诱导击穿光谱(LIBS)对固体进行检测时,受固体的表面物理形态和化学特性影响较大,因此,基体效应分析对LIBS在线检测研究有重要的意义。为了提高LIBS对表面凹凸不平样品成分在线检测的准确度,进行了LIBS对不同颗粒度铁屑样品的定量分析。实验所用的9种铁屑样品性状为松散的粉末、颗粒或长条状,为防止激光与样品相互作用时发生飞溅,将样品粘到双面胶上进行固定。采用的激发波长为1 064 nm、脉冲能量为35 mJ,探测器延时和积分门宽分别设置为1和10μs。为评估样品颗粒度不同导致的基体效应对LIBS光谱的影响,首先,利用主成分分析(PCA)对系列样品进行分类,结果显示,粉末状的四个样品被分出,即颗粒度不同导致的基体效应是样品光谱信号差异的主要原因。其次,以C3、 C5两个样品研磨前后的基体元素特征谱线FeⅠ330.635 nm为研究对象,通过对比谱线的强度和相对标准偏差(RSD)发现,颗粒度越小,谱线强度越大,稳定性越好。为校正LIBS光谱基体效应的干扰,采用了样品研磨预处理和光谱数据预处理两种方法。将细长条状的C3和C5两个样品进行研磨,研磨后谱线的强度和稳定性有较大提升;分别研究了强度归一化、多元散射校正(MSC)以及两者结合对光谱进行处理的效果,三种光谱预处理均使谱线的稳定性得到显著提高。通过支持向量机(SVM)对Cu元素的定量结果进行了评估和对比,结果发现,采用研磨样品并结合强度归一化与MSC预处理得到的校正效果最优,最终使S1和S2两个待测样品的Cu元素预测相对误差(RE)分别降为1.745%和1.857%,预测均方根误差(RMSEP)降为0.020。该研究可为表面凹凸不平样品的LIBS检测提供一定的方法依据和参考。  相似文献   

16.
利用Nd:YAG脉冲激光器作为光源,在实验室自然大气环境下诱导产生国家标准土壤的激光等离子体,选取砷的228.8nm特征谱线作为分析线,测量并分析了砷元素的激光诱导击穿光谱特性。在相同含量和积分时间条件下,调节延迟时间,获取了砷元素的时间演化特性。确定砷元素的最佳延迟时间为1μs,积分时间为2μs。测定不同含量下,砷的特征谱线强度,给出砷元素的定标曲线,并计算得到砷元素的检测限为45mg/kg。  相似文献   

17.
激光诱导击穿光谱(LIBS)技术作为一项新兴的水下原位探测技术,备受海洋探测技术领域的关注。将这项技术推向实用化的关键之一是改善LIBS的远程探测能力,因此需要采用超击穿阈值的高能量探测激光。为观察超击穿阈值情况下的等离子体辐射和动态击穿特性,采用图像与光谱相结合的方法,以KCl溶液为样品进行了系列实验研究。通过对1~20 mJ不同能量激发下的等离子体图像分析,获得了不同激发条件下总辐射的轴向跨度和最亮点位置信息。随激光脉冲能量增大,等离子体长度增加,从1 mJ时的0.49 mm增加到20 mJ时的1.83 mm,同时辐射最亮点位置向激光入射方向移动了0.79 mm。结合光谱探测分析,得出等离子体特征辐射的轴向空间分布也对激光能量有明显的依赖性。虽然不同能量下谱线强度呈相似的轴向空间分布,但钾原子辐射最强处的位置和相应强度均随能量变化,在5 mJ激发下获得最佳辐射强度。实验结果表明,为满足远程LIBS应用需求,提高激光能量时应考虑其对原子辐射的影响。还对不同能量下的谱线的半高宽和信背比进行了观测分析。  相似文献   

18.
室温,常压下,利用Nd∶YAG脉冲激光器产生的波长为1 064 nm, 脉宽12 ns,能量分别180, 230和280 mJ的脉冲激光冲击Ti靶,使用中阶梯光栅光谱仪检测了三种激光能量下对应的光谱。调节延时器DG645的延迟时间,检测了延迟0~500 ns时间范围内Ti等离子体对应激光能量下的发射光谱,分析光谱,可以得到了九条不同的的TiⅠ 和TiⅡ等离子体谱线,证明在该实验条件下,Ti靶能够充分吸收能量电离且离子谱线具有不同的演化速率,利用Saha-Boltzmann法计算并分析Ti等离子体电子温度,实验结果表明:相同的延迟时间,激光能量越大,谱线相对强度越大,电子温度越高,谱线相对强度的变化量随激光能量的变化量增大而增大;在延时0~150 ns内,三种激光能量下的等离子体电子温度和谱线的相对强度都随延迟时间的增加而快速下降,其中280 mJ激光能量下的等离子体电子温度和谱线强度下降速率较快;在150~250 ns范围内,电子温度和谱线强度均随延迟时间的增加有一个缓慢的上升,180 mJ激光能量下的等离子体电子温度和谱线强度的上升速率较快。250~500 ns范围内,三种激光能量下的电子温度和谱线强度均随延迟时间的增加而缓慢下降。  相似文献   

19.
本文研究了煤粉形态对于激光诱导煤粉等离子体特性的影响,以指导应用激光感生击穿光谱进行煤质测量时最佳样品形态的选择.建立了一套激光诱导击穿光谱的实验台架,对同一煤种的4个不同粒径范围的粉状样品进行激光激发与光谱分析,利用钙原子不同跃迁能级发射谱线的强度分布计算了0.3~0.5μs区间内的等离子体温度,并依据谱线Stark展宽与电子密度的关系得到了等离子体的电子密度.再对激发不同粒径煤粉样品产生的等离子体温度与电子密度进行了对比.实验证明,煤粉粒径越小,等离子体温度越高且电子密度越大,也即样品的等离子化程度越高,越有利于煤中元素的定量分析.  相似文献   

20.
激光诱导击穿光谱(LIBS)具有样品无需预处理,操作简单,分析快速等优点,已在多个领域获得应用。实验搭建了飞秒激光诱导击穿光谱(Fs-LIBS)装置,使用波长800 nm,脉宽100 fs的飞秒激光器作为激发光源,门控ICCD作为检测器。LIBS用于检测静态液体时会发生液体波动飞溅等问题,信号较差,该实验以液体射流的方式进样,以NaCl标准溶液为模型体相,Na(Ⅰ) 589.0 nm为分析线进行测试。该实验采用时间分辨LIBS的方法,考察了飞秒激光作用于样品后的LIBS发射光谱随时间的演化,发现在激光脉冲作用于样品表面40 ns后Na原子发射谱线达到最强,信背比也同时达到最大值。表明飞秒脉冲激发的LIBS可以通过时间分辨,有效消除宽带背景发射的影响,更高效地对样品中的待测目标进行检测。研究了激光激发功率、 ICCD门宽、激光焦点到样品表面距离等实验条件对LIBS信号强度和信噪比的影响,并优化了实验参数。在延迟时间40 ns、激发功率100 mW、门宽5μs、焦点位于样品前表面的最佳实验条件下,测试了海水样品的LIBS光谱和Na含量,检测了不同浓度NaCl标准溶液,并绘制了Na(Ⅰ) 5...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号