首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
采用电弧放电法制备内嵌镧金属富勒烯的原灰,通过改变氦气压力及电流强度来提高内嵌镧金属富勒烯产率。原灰由1,2,4-三氯苯提取并回溶入甲苯后,利用分析型高相液相色谱(HPLC)对提取液中各富勒烯组分进行分析。通过分别衡量3种常见含镧金属富勒烯La@C2v-C82、La@Cs-C82和La_2@C_(80)与C84的相对峰面积比,探讨了氦气压力和电流强度等对3种金属富勒烯产率的影响。实验结果表明,氦气压力与电流强度共同决定了金属富勒烯的产率,在(1)低电流高氦气压、(2)中等电流中等氦气压、(3)高电流低氦气压的条件下都可以高产率地获得含镧金属富勒烯。此外,调整电流强度和氦气压力可以改变La@C2v-C82和La@Cs-C82的相对比例。例如,在电流为100、120 A或氦气压为20、35 k Pa时,此前认为的"minor"异构体La@Cs-C82的含量甚至高于"major"异构体La@C2v-C82。还发现降低电流强度或减小氦气压力可促进La_2@C_(80)的生成,这表明La_2@C_(80)与La@C82的形成过程可能是不同的。  相似文献   

2.
通过紫外-可见吸收光谱研究了环状二卟啉与trans-2,trans-3,trans-4和e型4种吡咯烷二取代C60衍生物(bis-C60)异构体之间的弱相互作用。研究表明,吡咯烷取代基团的引入使富勒烯与二卟啉的结合常数按C60 >单取代C60 >二取代C60的顺序降低。4种bis-C60与二卟啉的结合常数变化顺序为trans-2 >trans-3≈trans-4> e,表明2个取代基间的相对位置对二取代C60与环状二卟啉间作用有一定影响,分析认为主,客体分子间空间位阻效应的差异是导致这一变化的主要原因。以trans-3 bis-C60/二卟啉复合物为代表,通过密度泛函理论模拟了其几何结构和吸收光谱。  相似文献   

3.
配体C9H7R(R=CH2CH2CH3 (1),CH2(CH3)2 (2),C5H9 (3),CH2C6H5 (4),CH2CH=CH2 (5))分别与Ru3(CO)12在二甲苯或庚烷中加热回流,得到了6个双核配合物[(η5-C9H6R)Ru(CO)(μ-CO)]2(R=CH2CH2CH3 (6),CH2(CH3)2 (7),C5H8 (8),CH2C6H5 (9),CH2CH=CH2 (10))和[(η5-C9H6)(H3CH2C)CHCH(CH2CH3)(η5-C9H6)] [Ru(CO)(μ-CO)]2 (11).通过元素分析、红外光谱、核磁共振氢谱对配合物的结构进行了表征,并用X-射线单晶衍射法测定了配合物6,9,1011的结构.  相似文献   

4.
合成了4个新的有机锡联苯乙酸酯{[(n-C4H9)4Sn(O2CCH2C6H4C6H5-4)]2O}2 (1)和R3SnO2CCH2C6H4C6H5-4(R=C4H52c-C6H113;C6H5C(CH3)2CH24),利用元素分析、IR、 1H和 13C NMR表征了其结构。通过X-射线单晶衍射测定了14的晶体结构。化合物1和化合物4均属三斜晶系,空间群P1。化合物1为具有Sn2O2四元环的中心对称二聚体结构,4为畸变的四面体结构。生物活性测试结果表明,化合物14对3种人癌细胞HeLa、CoLo205和MCF-7具有较好的体外抑制活性。  相似文献   

5.
用键共振能和拓扑共振能方法对富勒烯C36CH2开环结构中的所有可能异构体及其阳离子和阴离子芳香性进行了研究. 计算结果表明, C36CH2异构体的稳定性与D6hD2d异构体中各键的键共振能直接有关, 且CH2基团插入在5/5键时得到的异构体最稳定. C36CH2的阳离子因其共振能为负值而具有反芳香性. 反之, C36CH2阴离子因共振能为正值而具有较高的芳香性和稳定性. 从理论上预计C36CH2的高价阴离子具有很高的芳香性和稳定性.  相似文献   

6.
配体[C5Me4HR][R=4-BrPh(1),(MeC5H3N)CH2(2)]分别与Mo(CO)6,Ru3(CO)12和Fe(CO)5在二甲苯中加热回流,得到了6个双核配合物trans-[η5-C5Me4R]2Mo2(CO)6(3,4),trans-[(η5-C5Me4R)Ru(CO)(μ-CO)]2(5,6)和trans-[η5-(C5Me4R)Fe(CO)(μ-CO)]2(7,8,).通过元素分析、红外光谱、核磁共振氢谱对配合物的结构进行了表征,并用X-射线单晶衍射法测定了配合物3,5,68的结构.  相似文献   

7.
鉴于含硅-过渡金属键化合物作为催化剂具有重要的应用价值, 在我们最近发现的化合物(η5,η5-C5H4Me2SiSi-Me2C5H4)Fe2(CO)4 (1)的硅硅键和铁铁键复分解重排反应可以有效地合成含有两个硅铁键的环状化合物[Me2Si-η5-C5H4- Fe(CO)2]2 (2)的基础上, 对该硅铁键环状化合物的三苯基膦取代衍生物[Me2Si-η5-C5H4-Fe(CO)(PPh3)][Me2Si-η5-C5H4Fe(CO)2-n(PPh3)n] (3: n=0, 5: n=1)的合成方法进行了研究. 发现化合物1在三苯基膦存在下的复分解重排反应是合成单三苯基膦取代产物3的最好方法; 而双三苯基膦取代化合物5则可通过光照条件下2与三苯基膦发生羰基取代反应而得到, 产物中含有的顺反异构体可利用制备薄层色谱法分离. 利用X射线衍射法测定了化合物3的分子结构, 考察了三苯基膦配体的存在对分子结构的影响以及三苯基膦与铁形成的配位键的稳定性.  相似文献   

8.
以席夫碱配体N,N''-双(3-甲氧基亚水杨基)乙烯-1,2-二胺(H2salen)为原料,合成了2个新的镧系配合物,即[Dy(salen)2]3·3C2H9N2·2CH3OH(1),[Ho(salen)2]3·3C2H9N2·1.5CH3OH(2),并对其进行了基本表征。X射线单晶衍射结果表明,配合物12结晶于单斜晶系C2空间群,其金属配位环境类似。配合物12在零场和外加磁场下均具有单分子磁体(SMMs)行为。  相似文献   

9.
基于卡里普索结构预测程序和密度泛函理论的第一性原理计算,搜索确定了VB2n-n=8~12)团簇的基态和亚稳态结构。结果发现,V原子的掺杂完全改变了原硼团簇的结构并提高了原体系的稳定性。掺杂体系基态结构分别呈现高对称性的鼓状(VB16-C2v)、管状(VB18-C2v和VB20-Cs)及笼状(VB22-C2和VB24-D3h)结构。基于基态结构,研究了体系的电荷转移和极化率,拟合出了光电子能谱、红外和拉曼谱图,分析了流变键和芳香特性。最后,研究了体系的热力学特性,讨论了温度对热力学参数的影响。  相似文献   

10.
本文报道了 4个含异恶唑基团的二铁配合物的制备及其结构表征。以含羟基二铁配合物[Fe2(CO)6(μ-SCH2CH(CH2OH)S)] (1)与 5-甲基异恶唑-4-羧酸为原料,经过酯化反应以高产率制备了配合物[Fe2(CO)6(μ-SCH2CHCH2OOC(5-C3HNOCH3)S)] (2),再分别与三(对甲苯基)膦、三(4-氟苯基)膦或三(2-甲氧基苯基)膦反应,合成了3个含膦配合物[Fe2(CO)5(L)(μ-SCH2CHCH2OOC(5-C3HNOCH3)S)],其中 L=P(4-C6H4CH3)3 (3)、P(4-C6H4F)3 (4)、P(2-C6H4OCH3)3 (5)。使用元素分析、谱学和 X 射线晶体学对新配合物的结构进行了表征。电化学性质研究表明这些配合物可以催化醋酸中的质子还原产生氢气。其中,2拥有最低的过电位而4拥有最高的催化效率。此外,该类配合物还具有一定的抗菌活性。  相似文献   

11.
The recent progress of the structural studies of endohedral metallofullerenes by the synchrotron radiation (SR) powder diffraction utilizing the maximum entropy method (MEM) is reviewed. Results of the endohedral metallofullerenes (Y@C82, La@C82, Sc@C82, Sc2@C84, Sc3@C82, Sc2@C66, La2@C80 and Sc2C2@C84) are given. The precise MEM charge densities of metallofullerenes presents the direct image of endohedral nature of metallofullerenes indicating the charge transfer from metal atoms to carbon cage, which governs the stability of the unique endohedral structures. The MEM/Rietveld method and SR powder method using imaging plate (IP), which are the crucial methods for data analysis and measurement in order to determine structure of fulleride, are also mentioned in some detail.  相似文献   

12.
Metal–cage and intracluster bonding was studied in detail by quantum theory of atoms in molecules (QTAIM) for the four major classes of endohedral metallofullerenes (EMFs), including monometallofullerenes Ca@C72, La@C72, M@C82 (M=Ca, Sc, Y, La), dimetallofullerenes Sc2@C76, Y2@C82, Y2@C79N, La2@C78, La2@C80, metal nitride clusterfullerenes Sc3N@C2n (2n=68, 70, 78, 80), Y3N@C2n (2n=78, 80, 82, 84, 86, 88), La3N@C2n (2n=88, 92, 96), metal carbide clusterfullerenes Sc2C2@C68, Sc2C2@C82, Sc2C2@C84, Ti2C2@C78, Y2C2@C82, Sc3C2@C80, as well as Sc3CH@C80 and Sc4Ox@C80 (x=2, 3), that is, 42 EMF molecules and ions in total. Analysis of the delocalization indices and bond critical point (BCP) indicators such as Gbcp/ρbcp, Hbcp/ρbcp, and |Vbcp|/Gbcp, revealed that all types of bonding in EMFs exhibit a high degree of covalency, and the ionic model is reasonable only for the Ca‐based EMFs. Metal–metal bonds with negative values of the electron‐density Laplacian were found in Y2@C82, Y2@C79N, Sc4O2@C80, and anionic forms of La2@C80. A delocalized nature of the metal–cage bonding results in a topological instability of the electron density in EMFs with an unpredictable number of metal–cage bond paths and large elipticity values.  相似文献   

13.
One of the most important reactions in fullerene chemistry is the Diels–Alder (DA) reaction. In two previous experimental studies, the DA cycloaddition reactions of cyclopentadiene (Cp) and 1,2,3,4,5‐pentamethylcyclopentadiene (Cp*) with La@C2v‐C82 were investigated. The attack of Cp was proposed to occur on bond 19 , whereas that of Cp* was confirmed by X‐ray analysis to be over bond o . Moreover, the stabilities of the Cp and Cp* adducts were found to be significantly different, that is, the decomposition of La@C2v‐C82Cp was one order of magnitude faster than that of La@C2v‐C82Cp*. Herein, we computationally analyze these DA cycloadditions with two main goals: First, to compute the thermodynamics and kinetics of the cycloadditions of Cp and Cp* to different bonds of La@C2v‐C82 to assess and compare the regioselectivity of these two reactions. Second, to understand the origin of the different thermal stabilities of the La@C82Cp and La@C82Cp* adducts. Our results show that the regioselectivity of the two DA cycloadditions is the same, with preferred attack on bond o . This result corrects the previous assumption of the regioselectivity of the Cp attack that was made based only on the shape of the La@C82 singly occupied molecular orbital. In addition, we show that the higher stability of the La@C82Cp* adduct is not due to the electronic effects of the methyl groups on the Cp ring, as previously suggested, but to higher long‐range dispersion interactions in the Cp* case, which enhance the stabilization of the reactant complex, transition state, and products with respect to the separated reactants. This stabilization for the La@C82Cp* case decreases the Gibbs reaction energy, thus allowing competition between the direct and retro reactions and making dissociation more difficult.  相似文献   

14.
Ever since the first synthesis of La@C82 and U@C28, there has been a growing interest in the study of endohedral metallofullerenes (EMFs) because of their great potential in various applications. Here we design a novel heteronuclear EMF (U‐Gd)@C60, by using density functional theory (DFT), which shows an encapsulation energy of about ?5.53 eV, comparable to that of U2@C60, La2@C80, and Lu2@C76. (U‐Gd)@C60 is found to have a surprising twofold, single‐electron U?Gd bond that results from the strong nanoconfinement of the fullerene, dominated by uranium′s 5f and 6d and gadolinium′s 5d atomic orbitals. The ground state shows an 11‐et high spin state, and the net spins distributed on the U‐pole carbons are relatively scattered, while they are highly concentrated on the Gd‐pole carbons. The exceptional electronic characteristics of this novel EMF, containing both uranium and gadolinium atoms encapsulated, might prove useful for future applications in nuclear energy and biomedicine.  相似文献   

15.
The structural determination of endohedral metallofullerenes has attracted special attention in disclosing the formation mechanism and developing new routes to bulk production. Recent advances in the theoretical and experimental studies are summarized with representative mono- and dimetallofullerenes such as M@C82 (M=Ca, Sc, Y, and La), Sc2@C84, and La2@C80. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 232–239, 1998  相似文献   

16.
Chemical modification of endohedral metallofullerenes (EMFs) is an efficient strategy to realize their ultimate applications in many fields. Herein, we report the highly regioselective and quantitative mono-formation of pyrazole- and pyrrole-ring-fused derivatives of the prototypical di-EMF Y2@C3v(8)-C82, that is, Y2@C3v(8)-C82(C13N2H10) and Y2@C3v(8)-C82(C9NH11), from the respective 1,3-dipolar reactions with either diphenylnitrilimine or N-benzylazomethine ylide, without the formation of any bis- or multi-adducts. Crystallographic results unambiguously reveal that only one [6,6]-bond out of the twenty-five different types of nonequivalent C−C bonds of Y2@C3v(8)-C82 is involved in the 1,3-dipolar reactions. Our theoretical results rationalize that the remarkably high regioselectivity and the quantitative formation of mono-adducts are direct results from the anisotropic distribution of π-electron density on the C3v(8)-C82 cage and the local strain of the cage carbon atoms as well. Interestingly, electrochemical and theoretical studies demonstrate that the reversibility of the redox processes, in particular the reversibility of the reductive processes of Y2@C3v(8)-C82, has been markedly altered upon exohedral functionalization, but the oxidative process was less influenced, indicating that the oxidation is mainly influenced by the internal Y2 cluster, whereas the reduction is primarily associated with the fullerene cage. The pyrazole and pyrrole-fused derivatives may find potential applications as organic photovoltaic materials and biological reagents.  相似文献   

17.
Successful isolation and characterization of a series of Er-based dimetallofullerenes present valuable insights into the realm of metal–metal bonding. These species are crystallographically identified as Er2@Cs(6)-C82, Er2@C3v(8)-C82, Er2@C1(12)-C84, and Er2@C2v(9)-C86, in which the structure of the C1(12)-C84 cage is unambiguously characterized for the first time by single-crystal X-ray diffraction. Interestingly, natural bond orbital analysis demonstrates that the two Er atoms in Er2@Cs(6)-C82, Er2@C3v(8)-C82, and Er2@C2v(9)-C86 form a two-electron-two-center Er−Er bond. However, for Er2@C1(12)-C84, with the longest Er⋅⋅⋅Er distance, a one-electron-two-center Er−Er bond may exist. Thus, the difference in the Er⋅⋅⋅Er separation indicates distinct metal bonding natures, suggesting a distance-dependent bonding behavior for the internal dimetallic cluster. Additionally, electrochemical studies suggest that Er2@C82–86 are good electron donors instead of electron acceptors. Hence, this finding initiates a connection between metal–metal bonding chemistry and fullerene chemistry.  相似文献   

18.
For the first time, a C60 derivative ( 1 ) and two different lanthanum metallofullerene derivatives, La@C82Py ( 2 ) and La2@C80Py ( 3 ), that feature a pyridyl group as a coordination site for transition‐metal ions have been synthesized and integrated as electron acceptors into coordinative electron‐donor/electron‐acceptor hybrids. Zinc tetraphenylporphyrin ( ZnP ) served as an excited‐state electron donor in this respect. Our investigations, by means of steady‐state and time‐resolved photophysical techniques found that electron transfer governs the excited‐state deactivation in all of these systems, namely 1/ZnP , 2/ZnP , and 3/ZnP , whereas, in the ground state, notable electronic interactions are lacking. Variation of the electron‐accepting fullerene or metallofullerene moieties provides the incentive for fine‐tuning the binding constants, the charge‐separation kinetics, and the charge‐recombination kinetics. To this end, the binding constants, which ranged from log Kassoc=3.94–4.38, are dominated by axial coordination, with minor contributions from the orbital overlap of the curved and planar π systems. The charge‐separation and charge‐recombination kinetics, which are in the order of 1010 and 108 s?1, relate to the reduction potential of the fullerene and metallofullerenes, respectively.  相似文献   

19.
Chemical functionalization of endohedral metallofullerenes (EMFs) is essential for the application of these novel carbon materials. Actinide EMFs, a new EMF family member, have presented unique molecular and electronic structures but their chemical properties remain unexplored. Here, for the first time, we report the chemical functionalization of actinide EMFs, in which the photochemical reaction of Th@C3v(8)-C82 and U@C2v(9)-C82 with 2-adamantane-2,3′-[3H]-diazirine (AdN2, 1) was systematically investigated. The combined HPLC and MALDI-TOF analyses show that carbene addition by photochemical reaction afforded three isomers of Th@C3v(8)-C82Ad and four isomers of U@C2v(9)-C82Ad (Ad = adamantylidene), presenting notably higher reactivity than their lanthanide analogs. Among these novel EMF derivatives, Th@C3v(8)-C82Ad(I, II, III) and U@C2v(9)-C82Ad(I, II, III) were successfully isolated and were characterized by UV-vis-NIR spectroscopy. In particular, the molecular structures of first actinide fullerene derivatives, Th@C3v(8)-C82Ad(I) and U@C2v(9)-C82Ad(I), were unambiguously determined by single crystal X-ray crystallography, both of which show a [6,6]-open cage structure. In addition, isomerization of Th@C3v(8)-C82Ad(II), Th@C3v(8)-C82Ad(III), U@C2v(9)-C82Ad(II) and U@C2v(9)-C82Ad(III) was observed at room temperature. Computational studies suggest that the attached carbon atoms on the cages of both Th@C3v(8)-C82Ad(I) and U@C2v(9)-C82Ad(I) have the largest negative charges, thus facilitating the electrophilic attack. Furthermore, it reveals that, compared to their lanthanide analogs, Th@C3v(8)-C82 and U@C2v(9)-C82 have much closer metal–cage distance, increased metal-to-cage charge transfer, and strong metal–cage interactions stemming from the significant contribution of extended Th-5f and U-5f orbitals to the occupied molecular orbitals, all of which give rise to their unusual high reactivity. This study provides first insights into the exceptional chemical properties of actinide endohedral fullerenes, which pave ways for the future functionalization and application of these novel EMF compounds.

Photochemical reaction of Th@C3v(8)-C82 and U@C2v(9)-C82 with 2-adamantane-2,3′-[3H]-diazirine (AdN2, 1) afforded three isomers of Th@C3v(8)-C82Ad and four isomers of U@C2v(9)-C82Ad (Ad = adamantylidene), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号