首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
介质阻挡放电等离子体中·OH和HO2·自由基的数值模拟计算   总被引:4,自引:0,他引:4  
在介质阻挡放电等离子体N2/O2/H2O/HCHO体系中通过解Boitzmann方程,得到电子能量分布函数,利用得到的电子能量分布函数计算电子-分子碰撞反应速率常数.然后把有关的反应速率常数带入速率方程,计算得到该体系在介质阻挡放电时,·OH、HO2·和电子的浓度随时间的演变以及·OH、HO2·浓度随H2O、O2摩尔分数的变化,并将模拟结果与实验值进行了对比,两者符合得较好.  相似文献   

2.
在介质阻挡放电等离子体N2/O2/H2O/HCHO体系中通过解Boltzmann方程,得到电子能量分布函数,利用得到的电子能量分布函数计算电子。分子碰撞反应速率常数。然后把有关的反应速率常数带入速率方程,计算得到该体系在介质阻挡放电时,·OH、HO2·和电子的浓度随时间的演变以及·OH、HO2·浓度随H2O、O2摩尔分数的变化,并将模拟结果与实验值进行了对比,两者符合得较好。  相似文献   

3.
在CBS-QB3水平上研究了CH3CN 和·OH反应的势能面, 其中包括两个中间体和9个反应过渡态. 分别给出了各主要物质的稳定构型、相对能量及各反应路径的能垒. 根据计算的CBS-QB3势能面, 探讨了CH3CN+·OH反应机理. 计算结果表明, 生成产物P1(·CH2CN+H2O)的反应路径在整个反应体系中占主要地位. 运用过渡态理论对产物通道P1(·CH2CN+H2O)的速率常数k1(cm3·molecule-1·s-1)进行了计算. 预测了k1(cm3·molecule-1·s-1)在250-3000 K温度范围内的速率常数表达式为k1(250-3000 K)=2.06×10-20T3.045exp(-780.00/T). 通过与已有的实验值进行对比得出, 在实验所测定的250-320 K 范围内, 计算得到的k1的数值与已有的实验值比较吻合. 由初始反应物生成产物P1 (·CH2CN+H2O)只需要克服一个14.2 kJ·mol-1的能垒. 而产物·CH2CN+H2O生成后要重新回到初始反应物CH3CN+·OH, 则需要克服一个高达111.2 kJ·mol-1的能垒,这就表明一旦产物P1生成后就很难再回到初始反应物.  相似文献   

4.
利用激光闪光光解技术研究了有氧、无氧条件下HNO2-C6H5Br-H2O体系的光化学反应. 研究结果表明, HNO2与C6H5Br的光化学反应由HNO2光解产生·OH自由基引发, ·OH与C6H5Br反应生成C6H5Br…OH, 反应速率常数为(8.1±0.7)×109 L·mol-1·s-1. C6H5Br…OH可被HNO2或O2氧化. C6H5Br…OH 与HNO2的二级反应速率常数为(3.0±0.5)×107 L·mol-1·s-1, 比C6H5Br…OH与O2的反应速率常数(4.0±0.6)×108 L·mol-1·s-1小, C6H5Br…OH与O2生成的C6H5Br…OHO2以(2.4±0.1)×104 s-1 的速率单分子衰减. 气相色谱-质谱联用(GC-MS)分析表明, C6H5Br…OH 与HNO2或O2作用可形成多种含硝基的化合物或醌类物质.  相似文献   

5.
在室温(298±2)K、大气压(1×10^5Pa)下,分别测定了HO2及HO2+OH混合自由基在化学放大过程中的水效应,发现水效应不随自由基的类型有显著变化.在此基础上,采用密度泛函理论在CCSD(T)/6-311G(2d,2p)//B3LYP/6-311G(2d,2P)水平上研究了HO2自由基-水加合物HO2·H2O与NO的反应.计算结果表明HO2·H2O与NO主反应通道为HO2·H2O+NO→HNO3+H2O(R4a).应用Polyrate程序计算了(R4a)的速率常数.在200—2000K温度范围内,拟合得到该反应速率常数的三参数Arrenhnius方程为:k=5.49×10^7T^1.03exp(-14798/T).将理论计算结果用于模式计算中模拟得到的水效应曲线与实验测定曲线一致,表明(R4a)可能是形成水效应的主要原因.  相似文献   

6.
在aug-cc-pVTZ基组下采用CCSD(T)和B3LYP的理论方法,研究了OH·与HOBr的反应,并考虑在大气中单个水分子对HOBr+OH·反应机理及动力学的影响.理论计算表明:对于OH+HOBr反应,发现了两个反应通道及其对应的反应前络合物,且计算出的能垒与实验结果符合得较好,当加入一个水分子后,共找到6个不同的反应通道.更加重要的是对于HOBr与H2O…HO·氢键络合物反应,反应能垒降低约1.00 kcal·mol-1.为了评估这些过程在大气化学中的重要性,应用过渡态理论计算各个反应通道的反应速率常数.计算结果表明,在298 K,没有水分子参加反应的反应速率常数为1.77×10-13cm3 molecule-1·s-1,与以前的理论计算一致.当加入水分子时,HOBr…H2O+OH·反应速率常数增加约50倍.  相似文献   

7.
构建了CH_4-O_2-N_2-H_2O反应体系,对介质阻挡放电条件下甲烷水蒸气重整和部分氧化制氢反应过程进行了研究,考察了H2O/CH4物质的量比、O_2/N_2物质的量比、气体总流量、放电电压及放电频率等参数对制氢效率的影响,并基于发射光谱原位诊断法分析了反应机理。结果表明,甲烷转化率和氢气产率随着H_2O/CH_4物质的量比、O_2/N_2物质的量比和放电电压的增加而增加,而随着反应气体总流量的增加而减小,随着放电频率的增加先增大后减小,在9.8 kHz处取得最大值。在H_2O/CH_4物质的量比1.82、O_2/N_2物质的量比2.1、总流量136 mL/min、放电电压18.6 kV及放电频率9.8 kHz的条件下,甲烷转化率与氢气产率分别达47.45%和21.33%。甲烷和水蒸气等反应物分子通过电子解离产生CH_x·、H·、OH·、O·等自由基,进而通过自由基间的碰撞反应生成H_2;H·自由基一方面来源于CH_4的电子解离;另一方面来源于水蒸气一次解离以及OH·的进一步离解。部分氧化反应主要表现为O_2电子解离形成的O·自由基以及水蒸气一次反应产物OH·自由基进一步离解形成的O·自由基对CH_2·自由基的氧化。  相似文献   

8.
利用瞬态吸收光谱技术进行了有氧、无氧条件下苯与亚硝酸水溶液复相体系的交叉反应机理研究 ,初步考察了这些瞬态物种的生长与衰减等行为 ;并对其光解产物进行了GC/MS分析 .研究表明 ,HNO2 在 3 5 5nm紫外光的照射下可产生·OH和NO+ ,·OH自由基和苯反应生成C6H6 OHadduct ,反应速率常数为 8 9× 10 9L·mol-1·s-1,在有氧条件下C6H6 OHadduct进一步氧化为C6H6 OHO2 ,反应速率常数 3 3× 10 8L·mol-1·s-1;NO+ 自由基和苯作用形成C6H6 NO+ πcomplex ,然后进一步分解  相似文献   

9.
采用色散荧光光谱、时间分辨光谱和空间分辨光谱方法, 在标准大气压(1.013×105 Pa)下, 对以N2气为载气的H2O蒸气脉冲流光放电等离子体激发解离反应动力学过程进行了实验研究. 将所得色散荧光谱归属于N2(C3∏u→B3∏g)、·OH(A2∑+→X2∏)、H(n=3→n=2)的辐射跃迁; 并对N2*、·OH*、H*三种活性粒子的指纹灵敏谱线(337.2、308.4、656.5 nm)荧光信号进行了时间分辨测量. 结果表明,·OH*和H*荧光信号分别滞后N2*荧光信号7.4 ns 和17.6 ns, 由此推断H2O分子的激发解离通道为: H2O分子与高能电子发生非弹性碰撞激发, 被激发到第一激发电子态的高振动能级, 然后自解离成激发态的·OH*自由基和基态的H原子. 空间分辨测量结果表明, 在距负电极0.5 mm附近, 活性荧光粒子浓度最高, 正好对应流光放电的负辉区, 该区域电子温度和电子浓度最高, 更有利于活性粒子的产生.  相似文献   

10.
严宣申 《化学教育》1988,9(5):55-56
高中和大学的化学教材上都断言:Cu(OH)2易溶于 NH3·H2O。但实际上这个反应不那么容易进行。有关实验如下:1.混合 CuSO4溶液和 NaOH 溶液得Cu(OH)2沉淀(实际上是碱式硫酸铜)。往含Cu(OH)2的溶液中加过量 NH3·H2O(2mol/dm3)也不易得到如书上所说的澄清的深蓝色溶液。若改用6mol/dm3的 NH3·H2O,仍不易得到澄清的深蓝色溶液。表明加大反应物浓度对这个反应的影响不明显。既然加大反应物浓度无济于事,是否反应物有错?  相似文献   

11.
低温等离子体转化NO/O2/N2气氛中NO的实验研究   总被引:1,自引:0,他引:1  
王军  蔡忆昔  王攀  庄凤芝  冉冬立 《化学学报》2009,67(20):2315-2318
通过建立低温等离子体实验系统, 研究了介质阻挡放电型低温等离子体反应器作用于NO/O2/N2混合气体系时, NO, O2初始浓度对NO的转化效率的影响以及NOx, O3浓度随能量密度的变化关系. 低温等离子体作用于NO/O2/N2混合气体系时, NO同时发生氧化还原反应, 氧化反应占主导地位, 大部分NO转化为NO2; NO转化率随O2, NO初始浓度增大而降低, 能量密度在450~600 J/L时转化率较高; 产生的O3浓度随能量密度的增大呈先增后减的趋势.  相似文献   

12.
介质阻挡放电和CuZSM-5结合体系中等离子体对C2H4的作用   总被引:2,自引:0,他引:2  
孙琪  杨佳  石雷  牛金海  宋志民 《化学学报》2009,67(15):1779-1783
采用吸附、程序升温脱附及氧化和发射光谱等技术研究了介质阻挡放电对气相和催化剂表面吸附乙烯的作用. 实验表明, 介质阻挡放电等离子体能脱附催化剂表面吸附物种(如CO2和H2O等), 并引发表面化学反应生成新物种(如在等离子体作用下C2H4和O2生成CO2和H2O); 改变催化剂表面积碳化合物结构, 并降低其起燃点; 引发气相中乙烯发生反应生成中间物种或碎片(如CN和CH等). 在富氧体系NO/O2/N2中加入C2H4, 能使介质阻挡放电等离子体和CuZSM-5“一段法”结合体系产生协同效应, 提高NOx转化率. 该协同效应的产生与等离子体在气相及催化剂表面引发化学反应, 产生参与NOx还原反应的新稳态物种和短寿命高能活性物种有关.  相似文献   

13.
C2H3+NO2反应速率常数的研究   总被引:6,自引:0,他引:6  
利用激光光解C2H3Br产生C2H3自由基,在气相298 K, 总压2.66×103 Pa的条件下,研究C2H3与NO2的反应,用激光光解-激光诱导荧光(LP-LIF)检测中间产物OH自由基的相对浓度随着反应时间的变化关系,报导了双分子反应C2H3+NO2的速率常数k(C2H3+NO2)=(1.8±0.05)×10-11cm3•molec.-1•s-1,同时也得到OH+NO2反应的速率常数k(OH+NO2)=(2.1±0.15)×10-12 cm3•molec.-1•s-1.  相似文献   

14.
O2·-和H2O2是Ti O2光催化反应过程中产生的重要活性氧物种.本文使用鲁米诺作为化学发光探针,针对两者寿命不同,建立了连续流动化学发光在线定量检测方法.对于O2·-,由于寿命短,标准品不易得到,将光照后Ti O2样品10s内与鲁米诺混合产生化学发光,根据鲁米诺和O2·-化学计量关系,将该发光强度对应的鲁米诺浓度转换成O2·-的浓度,实现间接定量;对于H2O2,将光照后的Ti O2溶液于黑暗处30 min后进行定量.该方法测得Ti O2光催化产生O2·-和H2O2的浓度范围分别为7.5~30 nmol/L和0.60~3.0μmol/L,检测限分别为1.95 nmol/L和18.0 nmol/L.O2·-和H2O2的生成动力学研究发现,两者的生成均符合指数衰减函数增长,通过拟合计算,其生成速率常数(kf)分别为0.0653nmol·s-1和15.0 nmol·s-1,表明在Ti O2光催化反应中H2O2的生成速率高于O2·-.  相似文献   

15.
利用激光闪光光解-瞬态吸收光谱技术研究了355 nm 光作用下六氟苯(C6F6)-HNO2水溶液的反应机理, 探讨了中间产物及其动力学行为, 并对终产物进行了分析. 实验表明, C6F6可与HNO2光解产生的OH自由基反应生成加合物C6F6…OH, 二级反应速率常数为1.8×109 L·mol -1·s-1, 加合物吸收峰位置在250、270和400 nm处; C6F6…OH 加合物通过消除反应生成C6F5O·, 其表观生成常数为6.1×105 s-1. C6F6…OH与O2复合转化为C6F6OHO2, 二级反应速率常数为2.8×106 L·mol-1·s-1, C6F6OHO2峰位置与C6F6…OH 加合物相似. 终产物分析表明, OH自由基与六氟苯发生消除HF的反应而生成C6F5OH, 有O2时, 还产生四氟醌C6F4O2, 但无论有氧还是无氧体系, 均不发生硝基化反应.  相似文献   

16.
在室温条件下研究了电子受体H2O2和O2对TiO2光催化甘油氧化反应中的活性氧物种、甘油转化率和产物分布的影响。当在紫外光辐射和TiO2的体系中不存在电子受体时,只产生HO?自由基。而当在此体系中有电子受体存在时,则产生了HO?自由基和1O2,但它们的浓度不同,这取决于电子受体的浓度。以H2O2为电子受体时甘油转化率的提高大于以O2为电子受体时。甘油转化生成有价值产物的类型则与体系中的活性氧物种浓度有关。  相似文献   

17.
马洁  武海  朱亚琦 《化学通报》2006,69(12):881-882
利用共价键合法,将新亚甲蓝(NMB)与辣根过氧化酶(HRP)修饰于玻碳电极表面,制成一种新型的电流型H2O2传感器。探讨了该传感器在0·1mol/L磷酸缓冲溶液(pH=7·0)中的电化学性质。结果表明,NMB作为介体能够有效地在辣根过氧化酶和电极之间传递电子。测得电子转移系数为0·861,表观反应速率常数为1·27s-1。研究了传感器对H2O2的响应及动力学性质,米氏常数为8·27μmol/L,线性响应范围为2·5~100μmol/L。同时研究了pH、缓冲容量及温度等因素对H2O2传感器的影响。  相似文献   

18.
采用CCSD(T)/aug-cc-pVTZ//B3LYP/6-311+G(2df,2p)方法对HO2+H2S反应及单分子水参与其主通道的微观机理和速率常数进行了研究.结果表明,HO2+H2S反应主通道为生成产物为H2O2+HS的通道,其表观活化能为14.94 kJ/mol.考虑单分子水对主产物通道的影响发现,所得的势能面比无水参与的反应复杂得多,经历了H2O…HO2+H2S(RW1),HO2…H2O+H2S(RW2)和H2O…H2S+HO2(RW3)3个通道,RW1~RW6共6个路径.其中通道RW1是水分子参与HO2+H2S反应主通道的优势通道.在216.7~298.2K温度范围内通道RW1的有效速率常数呈现出正温度系数效应,在298 K时,k’RW 1/ktotal达到54.2%,表明在实际大气环境中水分子对HO2+H2S反应的主通道具有明显影响.  相似文献   

19.
对大气压介质阻挡放电脱除甲醛进行了化学动力学模拟, 建立了时空平均化的模型, 并对相关的结果进行了实验验证. 分析了各主要物种的浓度随放电时间的变化, 在模拟空气气氛下, HCHO主要由O·和OH·自由基脱除, 其中, OH·自由基的作用更为突出. 强调了氮分子的第一电子激发态N2(A3∑+u)的作用, 它与O2、H2O 分子的碰撞增加了O·和OH·自由基的浓度,在氮气气氛中, N2(A3∑+u)态是使HCHO脱除的主要物种.讨论了HCHO初始浓度、气体流量对HCHO 脱除比能耗和产物中CO2/CO 摩尔比值的影响, HCHO 初始浓度较高时, 甲醛脱除的比能耗较低, 在输入能量密度<60 J·L-1, HCHO 初始浓度较低时, 产物中nCO2 /nCO值较高.  相似文献   

20.
介质阻挡放电引发氮氧化物等离子体化学反应   总被引:3,自引:0,他引:3  
在523 K介质阻挡放电条件下,研究了不同气体组分体系中NO的转化.实验表明,在无氧体系(NO/N2)中,转化的NO主要分解为N2和O2.在富氧(NO/O2/N2)条件下,由于NO和NO2的生成, NO的转化率最低.体系中加入C2H4(NO/C2H4/N2)时, NO转化率与NO/N2体系几乎一样,与NO相比,生成的O更易与C2H4作用,几乎没有NO2的生成.当C2H4和O2共存时(NO/O2/C2H4/N2),NO主要被氧化为NO2.当能量密度为125 J&#8226;L-1时, 与其它体系相比,NO/O2/C2H4/N2体系中NO转化率和NO2生成量最大,转化每个 NO分子能耗最小(61 eV).体系中C2H4主要被氧化为CO.四个体系中N2O的生成量都较少.讨论了介质阻挡放电条件下上述四个体系可能的反应机制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号