首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Elastic light scattering by low-dimensional quantum objects without a change in the frequency is theoretically investigated in terms of the quantum perturbation theory. The differential cross section of resonance light scattering from any excitons in any quantum dots is calculated. It is demonstrated that, when the light wavelengths considerably exceed the quantum-dot size, the polarization and angular distribution of the scattered light do not depend on the shape, the size, or the configuration of quantum dots. In this case, the total light scattering cross section is independent of the quantum-dot size. If the radiative damping of an exciton exceeds the nonradiative damping, the total light scattering cross section at resonance is of the order of the light wavelength squared. The radiative damping associated with the long-range exchange interaction between electrons and holes is calculated for any excitons and any quantum dots.  相似文献   

2.
Novel applications of the technique of optically detected cyclotron resonance (ODCR) are discussed. This method is an extension of the conventional cyclotron resonance investigations and shows important advantages when applied to characterization of semiconductor materials. These advantages are due to a higher sensitivity and a longer momentum relaxation time caused by photoneutralization of ionized impurities. This in turn enables experiments at lower magnetic fields and lower microwave radiation frequency. Photoexcitation used in ODCR often results in a simultaneous observation of electron and hole cyclotron resonances in the same sample, which is a rare case in a conventional CR study. High magnetic field far infrared ODCR experiments utilize all these advantages of the method. For the most common X-band (10 GHz) microwave setups, the ODCR resolution often is too low to allow accurate CR determination of the band structure parameters of the material studied. In that case, ODCR may be used for high-resolution photoluminescence experiments and for identification of carrier capture and recombination paths at impurities, as was proposed recently. These new and important applications of the ODCR technique are described here, and documented by recent experimental results. The mechanism of ODCR detection for pure and doped semiconductors is discussed, and a prominent role of the impact ionization mechanism is demonstrated. This is followed by a discussion of recent applications of ODCR for identification of recombination mechanisms. Then high spectral resolution ODCR experiments are described, with the example of overlapping free-to-bound and donor-acceptor pair transitions. Some special applications of ODCR are demonstrated. ODCR also can be applied to analyze quantum confinement of carriers in two-dimensional (2D) structures such as heterojunctions and quantum wells. It is shown that useful information can be obtained on the electronic properties of the 2D electron (or hole) gas and the interlayer carrier transfer enhanced by carrier heating at CR absorption in such structures.  相似文献   

3.
In order to investigate thermal properties of excitons, we have performed time-resolved photoluminescence (PL) measurements for a type-I (GaAs)15/(AlAs)15 superlattice. At low temperatures, PL signals show ordinal exponential time decay, whereas at high temperatures, the PL shows power decay. Such change of PL signals is understood by considering thermal dissociation of exciton into account. At low temperatures, recombination of bound excitons generates PL which shows exponential decay. At temperatures higher than the exciton binding energy, correlation between electrons and holes disappears. Recombination of free excitons causes PL which decays by a power function. By means of the least-squares fitting, we evaluate the portion of bound excitons, recombination time of bound and free excitons as functions of temperatures.  相似文献   

4.
Ultrafast optical pulses and coherent techniques are used to create spin entangled states of non-interacting electrons bound to donors in a CdTe quantum well. Our method, relying on the exchange interaction between optically excited holes and the impurities, can in principle, be applied to entangle a large number of spins. Results are presented for resonant excitation of localized excitons below the gap, and above the gap where the signatures of entanglement are significantly enhanced.  相似文献   

5.
Microwave cyclotron resonance of electrons and holes at the metal-to-semimetal transition in HgTe quantum wells with an inversed band structure has been investigated. The resonance has been studied by measuring microwave photoresistance in the frequency range of 35–170 GHz. The effective cyclotron masses of electrons and holes have been determined. A shift of the cyclotron resonance of the two-dimensional electrons at the metal-to-semimetal transition possibly caused by plasma effects in the two-dimensional semimetal has been discovered.  相似文献   

6.
We show that optical transitions of charged excitons in semiconductor heterostructures are governed in magnetic fields by a novel exact selection rule, a manifestation of magnetic translations. It is shown that the spin-triplet ground state of the quasi-two-dimensional charged exciton X--a bound state of two electrons and one hole-is optically inactive in photoluminescence at finite magnetic fields. Internal bound-to-bound X- triplet transition has a specific spectral position, below the electron cyclotron resonance, and is strictly prohibited in a translationally invariant system. These results allow one to discriminate between free and disorder-affected charged excitons.  相似文献   

7.
郑瑞伦 《物理学报》2007,56(8):4901-4907
建立了圆柱状量子点量子导线复合系统中激子满足的方程,用微扰论求出激子能量.以CdS/HgS/CdS/HgS/CdS圆柱状量子点量子导线复合系统为例,研究了系统中电子的概率分布和系统线度对激子能量的影响.结果表明:系统中电子、空穴以及激子的能量均随量子点高度h0的增大而减小,电子-空穴相互作用对基态激子能量的影响要大于激发态;电子沿径向方向的概率分布呈起伏状,在轴线和表面附近的概率趋于零,而在R/2附近概率最大;在量子点附近电子沿轴向方向的概率分布呈振荡特征 关键词: 量子点 量子导线 激子 能量  相似文献   

8.
An experimental technique is developed to perform photoexcitation of an ensemble of translationinvariant triplet excitons, to manipulate this ensemble, and to detect the properties of its components. In particular, the influence of temperature on the radiationless decay during the relaxation of an exciton spin into the ground state of a Hall insulator at a filling factor ν = 2 is studied. The generation of photoexcited electrons and holes is controlled using photoinduced resonance reflection spectra, which makes it possible to estimate the density of light-generated electron–hole pairs and to independently control the self-consistent generation of electrons at the first Landau level and holes (vacancies) at the ground (zero) cyclotron electronic level. The existence of triplet excitons is established from inelastic light scattering spectra, which are used to determine the singlet–triplet exciton splitting. The lifetimes of triplet excitons, which are closely related to the relaxation time of an electron spin, are extremely long: they reach 100 μs in perfect GaAs/AlGaAs heterostructures with a high mobility of two-dimensional electrons at low temperatures. These long spin relaxation times are qualitatively explained, and the expected collective behavior of high-density triplet magnetoexcitons at sufficiently low temperatures, which is related to their Bose nature, is discussed.  相似文献   

9.
We explore the Coulomb binding of electrons to holes confined to type-II GaSb self-assembled quantum dots. We demonstrate that at low laser power electrons are more weakly bound to holes trapped by the dots than to holes in the wetting layer. On the other hand, at high laser power the hydrogenic binding energy of dot excitons increases by more than a factor of two, and so exceeds that of wetting layer excitons. We attribute this to the strong binding of ‘core’ electrons to dots that are highly charged with holes by optical pumping.  相似文献   

10.
The mechanism of oscillations of the half-width and intensity of the cyclotron resonance (CR) line of electrons in a semimetal quantum well based on an InAs/AlSb/GaSb heterostructure is investigated experimentally and theoretically. It is shown that the oscillations of the CR spectrum are due to mixing of states of the spatially separated two-dimensional electrons and holes. Pis’ma Zh. éksp. Teor. Fiz. 68, No. 10, 753–758 (25 November 1998)  相似文献   

11.
The predicted quantitative relation between the density and trapping cross section of traps in Si3N4 and the Coulomb repulsion radius in the Wigner crystallization of carriers in localized states is observed experimentally. The absence of ESR for localized electrons and holes in Si3N4 is interpreted on the basis of a model of a resonance exchange interaction of electrons on account of tunneling via localized states. Pis’ma Zh. éksp. Teor. Fiz. 64, No. 7, 489–494 (10 October 1996)  相似文献   

12.
M.D. Girardeau 《Physica A》1979,95(3):609-614
The Hamiltonian of interaction of liquid helium with the quantized electromagnetic field plays an important role in such phenomena as Raman scattering, excitons, and possible cooperative effects of exchange of virtual photons. This interaction has been derived from first principles by application of an appropriate unitary transformation to the second-quantized Hamiltonian of nuclei and electrons interacting with the quantized radiation field. The transformation is chosen so that the atomic bound states appear explicitly in the relevant scattering and reaction terms of the transformed Hamiltonian.  相似文献   

13.
利用电子回旋辐射诊断系统并结合其他相关诊断研究了HL-2A托卡马克中逃逸电子与波间的反常多普勒共振作用.结果显示:欧姆放电下提高等离子密度能抑制逃逸电子束的不稳定性,但等离子密度的再次降低导致逃逸电子又会激发不稳定性波,并耦合不稳定性波发生二次反常多普勒共振作用.利用统计方法分析了HL-2A上不同放电阶段逃逸电子反常多普勒共振阈值(ωpe/ωce)区间大致都在0.17-0.54范围内.此共振机制导致逃逸电子在速度空间被波散射,平行能量转化到垂直能量,pitch角增加,同步辐射功率增强,逃逸电子能量限制在反常多普勒效应的阈值能量附近.基于反常多普勒共振的逃逸抑制能有效减轻逃逸电子对装置第一壁的损坏.  相似文献   

14.
We present a many-body theory for Frenkel excitons which takes into account their composite nature exactly. Our approach is based on four commutators similar to the ones we previously proposed for Wannier excitons. They allow us to calculate any physical quantity dealing with N excitons in terms of “Pauli scatterings” for carrier exchange in the absence of carrier interaction and “interaction scatterings” for carrier interactions in the absence of carrier exchange. We show that Frenkel excitons have a novel “transfer assisted exchange scattering”, specific to these excitons. It comes from indirect Coulomb processes between localized atomic states. These indirect processes, commonly called “electron-hole exchange” in the case of Wannier excitons and most often neglected, are crucial for Frenkel excitons, as they are the only ones responsible for the excitation transfer. We also show that in spite of the fact that Frenkel excitons are made of electrons and holes on the same atomic site, so that we could naively see them as elementary particles, they definitely are composite objects, their composite nature appearing through various properties, not always easy to guess. The present many-body theory for Frenkel excitons is thus going to appear as highly valuable to securely tackle their many-body physics, as in the case of nonlinear optical effects in organic semiconductors.  相似文献   

15.
In the cyclotron resonance (CR) spectra of two-dimensional (2D) electrons in InAs quantum wells, the CR line splitting is observed. The splitting is found to be an oscillating function of magnetic field. The oscillations do not correlate with the filling factor. The experimental results are interpreted in terms of the spin-orbit splitting in the presence of a built-in electric field appearing due to the asymmetry of the quantum-well potential. From the splitting of the CR line, the spin-orbit coupling constant αso is determined. The resulting value agrees well with the value obtained for the same sample from the Shubnikov-de Haas oscillations. The role of the resonance interaction of charge carriers in the well with the interface donor states is discussed.  相似文献   

16.
We have performed optically detected resonance (ODR) spectroscopy on modulation-doped GaAs/AlGaAs quantum wells of different widths in which lateral fluctuations of the well width were purposely introduced by growth interruption at the interfaces. These monolayer fluctuations form quantum dots for which confinement and Coulomb correlation energies are comparable. By monitoring resonant changes of the dot ensemble photoluminescence induced by far-infrared (FIR) radiation in a magnetic field, we have observed cyclotron resonance (CR) of free electrons in the widest wells, as well as internal transitions of mobile and localized charged excitons. The latter, which are forbidden by magnetic translational invariance, have previously not been observed. For the narrower wells the effects of non-parabolicity and carrier localization on the CR and CR-like transitions have to be included for a proper interpretation of the measurements.  相似文献   

17.
The cyclotron resonance (CR) problem for electrons over a helium film occupying the lower part of a resonator is solved. This problem is shown to represent an example of the well-known problem on the behavior of a system of coupled oscillators. For such oscillators, the coupling constant is determined as a function of the problem parameters with its minimal value in zero magnetic field and its maximal value at resonance conditions, when the cyclotron frequency coincides with one of the resonator modes. The details of the CR absorption of microwave energy by the coupled system formed by 2D electrons and a resonator are calculated. The results are discussed in application to the known CR experiments with electrons over helium.  相似文献   

18.
《Physics letters. A》1996,222(6):405-408
Elastic scattering of electrons from sodium clusters (Na8, Na20) is investigated for impact energies below the inelastic threshold of about 1 eV. We show that the observed resonance structure of the elastic cross section strongly depends on the inclusion of exchange effects between the cluster and the projectile electrons.  相似文献   

19.
In high quality semiconductor crystals, occurrence of cyclotron resonance is beautifully reflected on luminescence spectra. This feature is demonstrated in typical elemental semiconductor Ge, both doped and undoped. One obtains new information of kinetics in free carriers, free excitons, bound excitons and electron-hole drops.  相似文献   

20.
刘承师  向涛 《物理》2004,33(11):809-815
近年来,半导体量子阱中激子的玻色一爱因斯坦凝聚研究取得了很大进展.实验上利用耦合量子阱间接激子中电子和空穴在空间上的分离,显著提高了激子的冷却速度和寿命,成功地把激子冷却到1K以下,观察到了激子的准凝聚状态,并且在强激光照射下,发现了随光照强度增强而增大的激子发光环和环上形成的有规则斑点图案,引起了广泛的兴趣和重视.理论研究表明,发光环的出现是电子和空穴在量子阱中的反常输运行为造成的,但环上形成规则斑点的物理机理目前尚不清楚.文章介绍了这方面的实验背景和形成激子环的物理图像,指出了理论研究中存在的问题,并对解决问题的方案进行了讨论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号