首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
We have investigated optically detected cyclotron resonance (ODCR) and ordinary cyclotron resonance (CR) under the same condition, in Ge and Si, which include both high-purity and doped samples. In impact dissociation processes, which are the origin of ODCR, donorbound excitons have larger cross section for impinging electrons than for holes, and conversely, acceptor- bound excitons have larger cross section for holes than for electrons. Moreover, the ratio of impact dissociation cross section for holes to that for electrons varies with the number of excitons bound to an impurity. These phenomena are understood primarily in terms of exchange interaction between impinging carriers and constituents of bound excitons. In addition, it is found that the relative intensity of hole cyclotron resonance against electron resonance is larger in ODCR than in CR. This is understood in terms of exchange interaction by taking the many valley nature of the conduction band into account.  相似文献   

2.
We study the properties of high mobility GaAs/GaAlAs quantum well structure by monitoring the microwave induced changes in the low-temperature photoluminescence of the 2DEG as a function of the external magnetic field. The most pronounced changes are observed at cyclotron resonance conditions, but weak features are also visible at cyclotron resonance replicas. Possible observation of microwave induced shift in the Landau-level structure of magneto-photoluminescence is reported in addition to the effects of carrier heating which are conventionally bracketed together with microwave irradiation.  相似文献   

3.
The cyclotron resonance (CR) problem for electrons over a helium film occupying the lower part of a resonator is solved. This problem is shown to represent an example of the well-known problem on the behavior of a system of coupled oscillators. For such oscillators, the coupling constant is determined as a function of the problem parameters with its minimal value in zero magnetic field and its maximal value at resonance conditions, when the cyclotron frequency coincides with one of the resonator modes. The details of the CR absorption of microwave energy by the coupled system formed by 2D electrons and a resonator are calculated. The results are discussed in application to the known CR experiments with electrons over helium.  相似文献   

4.
A broadening of the absorption line of the classical cyclotron resonance (CR) in two- and three-dimensional semiconductors with neutral impurities of arbitrary depth is investigated. A dependence of the half-width of the classical CR line on the impurity characteristics (depth and range of the potential) is obtained in the wide range of the parameters. The broadening is studied within the Born approximation, and also at resonant and non-resonant scattering. Fundamental differences between the line broadening by neutral impurities in two- and three-dimensional semiconductors are revealed. An alternative explanation of classical experiments on electron scattering by neutral impurities (donors) is proposed.  相似文献   

5.
We have performed optically detected resonance (ODR) spectroscopy on modulation-doped GaAs/AlGaAs quantum wells of different widths in which lateral fluctuations of the well width were purposely introduced by growth interruption at the interfaces. These monolayer fluctuations form quantum dots for which confinement and Coulomb correlation energies are comparable. By monitoring resonant changes of the dot ensemble photoluminescence induced by far-infrared (FIR) radiation in a magnetic field, we have observed cyclotron resonance (CR) of free electrons in the widest wells, as well as internal transitions of mobile and localized charged excitons. The latter, which are forbidden by magnetic translational invariance, have previously not been observed. For the narrower wells the effects of non-parabolicity and carrier localization on the CR and CR-like transitions have to be included for a proper interpretation of the measurements.  相似文献   

6.
The possible applications of high-power millimeter (mm) and submillimeter waves from gyro-devices span a wide range of technologies. The plasma physics community has already taken advantage of recent advances in applying high-power micro- and mm-waves generated by gyrotron oscillators in the areas of RF-plasma production, heating, noninductive current drive, plasma stabilization and active plasma diagnostics for magnetic confinement thermonuclear fusion research, such as lower hybrid current drive (8 GHz), electron cyclotron resonance heating (ECRH) (28–170 GHz), electron cyclotron current drive (ECCD), collective Thomson scattering and heat-wave propagation experiments. Other important applications of gyrotrons are electron cyclotron resonance (ECR) discharges for generation of multi-charged ions and soft X-rays, as well as industrial materials processing and plasma chemistry. Submillimeter wave gyrotrons are employed in high-frequency broadband electron paramagnetic resonance (EPR) spectroscopy. Future applications which await the development of novel high-power gyro-amplifiers include high resolution radar ranging and imaging in atmospheric and planetary science as well as deep-space and specialized satellite communications and RF drivers for next-generation high-gradient linear accelerators (supercolliders). The present paper reviews the state-of-the-art and future prospects of these recent applications of gyro-devices.  相似文献   

7.
Experimental data are reported on studying cyclotron resonance in a two-dimensional electron system with an artificial random scattering potential generated by an array of self-organized AlInAs quantum islands formed in the plane of an AlGaAs/GaAs heterojunction. A sharp narrowing of the cyclotron resonance line is observed as the magnetic field increases, which is explained by the specific features of carrier scattering in this potential. The results obtained point to the formation of a strongly correlated electron state in strong magnetic fields at carrier concentrations smaller than the concentration of antidots.  相似文献   

8.
The collective resonant photoresponse in Si/SiGe structures with a 2DEG under microwave radiation is reported for the first time. The application of microwave radiation of various frequencies results in resonant photoconductivity at magnetic field values that are systematically lower than expected for the cyclotron resonance (CR) in an infinitely large two-dimensional electron system. The analysis of the data shows that the observed microwave radiation induced response is dominated by plasmon excitations.  相似文献   

9.
The mechanism of cyclotron resonance line splitting in the InAs/GaSb heterostructure in an inclined magnetic field has been studied experimentally and theoretically. It is shown that the admixing of electron and hole states leads to anticrossing of the Landau levels and, hence, to splitting of the cyclotron resonance line. In the case of an inclined magnetic field, the splitting is not observed, which is explained by the suppression of the admixing of electron and hole states due to the occurrence of an additional barrier for electrons and holes given a longitudinal magnetic field component.  相似文献   

10.
The magnetic field dependence of the cyclotron mass of heavy holes in asymmetric GaAs(100) quantum wells is measured by optical detection of resonant microwave absorption for various concentrations of quasi-two-dimensional holes. The effect of spin-orbit splitting on the cyclotron masses of heavy holes is discovered and investigated. The energy spectrum of holes is calculated on the basis of experimental data. The energy range in which spin-plasmon oscillations are observed in hole systems with various concentrations is predicted.  相似文献   

11.
Magneto-absorption spectra in ferromagnetic semiconductor In1−xMnxAs films and self-organized PbSe/PbEuTe quantum dot superlattices have been studied in the terahertz range at very high magnetic fields up to 500 T. Both heavy hole (HH) and light hole (LH) cyclotron resonance (CR) have been observed in bulk In1−xMnxAs thin films with different Mn concentrations. The detailed Landau level calculation in terms of the effective mass approximation well explained the CR peak positions, line shapes and the dependence of the circular polarization of the incident light on the CR spectra. In InMnAs/GaSb heterostructures that have higher ferromagnetic transition temperature (Tc) than the bulk samples, the observed HH and LH cyclotron masses are larger than that in the bulk thin films. We found that the CR peak position and its line shape suddenly change in the vicinity of the ferromagnetic transition temperature, suggesting the change in the electronic structure due to the ferromagnetic transition. Electron CR in PbSe/PbEuTe quantum dots has been observed and it was found that the effective mass of the electrons is considerably modified by the quantum confinement potential and the lattice strain around the dots. A large wavelength dependence of the absorption intensity was observed due to the interference effect of the radiation inside the sample.  相似文献   

12.
Reasons for microwave discharge initiation in the vacuum section of the output waveguide of a powerful gyroklystron are discussed. It is found that the discharge is located near the range of an electron cyclotron resonance. A one-sided multipactor discharge is numerically simulated in wide ranges of tilt angles and permanent magnetic fields. It is shown that the cyclotron resonance may considerably lower the multipactor discharge threshold in contrast to earlier concepts.  相似文献   

13.
抛物量子点中弱耦合磁极化子的性质   总被引:12,自引:7,他引:5  
王立国  肖景林 《发光学报》2003,24(6):562-566
应用线性组合算符和幺正变换方法研究了抛物量子点中磁极化子的基态性质。得出基态能和基态束缚能随有效束缚强度增大而减小,随回旋频率增大而增大。当有效柬缚强度给定,基态能量随电子-体纵光学声子耦合强度增加而减小。当有效束缚强度l0>0.3时,电子-体纵光学声子耦合强度的变化对量子点中弱耦合磁极化子的基态能量的影响变得显著。当有效束缚强度l0<0.3时,电子-体纵光学声子耦合强度的变化对基态能量影响很小。由于有效束缚强度与量子点受限强度的平方根成反比,所以量子点受限越强,基态能量、基态束缚能越大,电子一体纵光学声子耦合强度和磁场的变化对量子点的影响相对越小;当量子点受限变弱时,电子-声子耦合强度变化对量子点的影响变大,磁场对量子点的影响也变大,所以在量子点中,极化子对量子点的影响不容忽略。  相似文献   

14.
用迴旋管产生的大功率微波在电子迴旋频率的基频及二次谐波频率进行了托卡马克放电的预电离实验。实验证明,这种预电离方法比一般的预电离方法的击穿气压低,击穿电压及放电初期所耗费的变压器磁通也低得多。基频共振较二次谐波共振的效果好。 关键词:  相似文献   

15.
In tilted magnetic fields a bilayer electron–hole system is found to generate a photocurrent under terahertz radiation as the system is tuned to electron cyclotron resonance conditions. The photoinduced current amplitude oscillates with the magnetic field in correlation with Shubnikov–de Haas oscillations for electrons. The phenomenon is accounted for by a photomagnetic effect in electron–hole systems in the quantum Hall regime and has potentialities for terahertz detection and spectroscopy.  相似文献   

16.
This paper reports some recent results of time-resolved studies of the carrier dynamics in GaAs/GaAlAs quantum well structures with picosecond and subpicosecond time resolution. These experiments have provided insight into carrier trapping, energy relaxation, and carrier recombination processes. Carrier trapping into the quantum well layers is very efficient and determines the decay of the GaAlAs luminescence even for 1 μm thick cladding layers. Carrier recombination is enhanced particularly at low temperatures. This effect has been attributed to the increased overlap of electron and hole (exciton) wavefunctions in the quasi-two-dimensional carrier system.  相似文献   

17.
We have demonstrated a combination of frequency comb spin-echo protocol in a conventional microwave pulsed electron spin resonance spectrometer with gradient pulses of the external magnetic field applied for on-demand retrieval of signal microwave pulses at the required moments of time. A natural high-finesse periodic structure was used as a carrier of stored information. The structure is made out of hyperfine lines of electron spin resonance of tetracyanoethylene anion radicals in toluene at room temperature. Herein, we have also observed that using the pulses of gradient magnetic field can increase the memory capacity. The experimental results demonstrated promising opportunities for controlling electron nuclear spin coherence, which could be useful for implementation of broadband microwave or optical-microwave noise free quantum memory protocols.  相似文献   

18.
电子回旋共振微波等离子体技术及应用   总被引:1,自引:0,他引:1       下载免费PDF全文
 电子回旋共振微波等离子体技术(ECR-MP)在表面处理、等离子体刻蚀和薄膜制备,尤其是高品质的激光惯性约束聚变薄膜靶的制备中有着重要的应用。综述了ECR-MP的基本原理、反应装置、实验研究、理论研究和应用情况的发展现状,同时分析了其今后可能的发展趋势。  相似文献   

19.
The design of third generation electron cyclotron resonance ion sources (ECRIS) had to take into account some technical issues that are usually not relevant for conventional ECRIS, either in terms of microwave power management or in terms of stray magnetic field. In fact, strong magnets originate high stray fields that are detrimental for beam optics, for the pumping system lifetime and mainly for the gyrotron normally used for power generation. Additionally, the presence of intense X-ray fluxes generated by the ECRIS plasma, observed in many experiments, can generate an unexpected heat load upon the thermal balance of the superconducting ECRIS cryostat, which can trigger a warm-up in the case of closed-loop cryostat connected to a cryocooler setup. These and other issues are presented by the authors along with a study of possible solutions.  相似文献   

20.
Electronic properties of confined electrons at naturally formed twin boundaries in ZeSe have been investigated by microwave absorption measurements. Cyclotron resonance signal of the confined electrons was observed. On the cyclotron resonance peak, novel oscillation of the absorption intensity was observed. Similar oscillatory behavior was also observed in GaAs/AlGaAs heterostructures near cyclotron resonance filed at which new Shubnikov–de Haas-like oscillation was observed by Zudov. The oscillatory structure has a period not in inverse magnetic field but magnetic field. The origin of the oscillation observed is caused by Rayleigh interference of two-dimensional electron gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号