首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A non-chromatographic, sensitive and simple analytical method has been developed for the determination of toxic arsenic species in vegetable samples by hydride generation-atomic fluorescence spectrometry (HG-AFS). As(III), As(V), dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) were determined by hydride generation-atomic fluorescence spectrometry using a series of proportional equations. The method is based on a single extraction of the arsenic species considered from vegetables through sonication at room temperature with H(3)PO(4) 1 mol L(-1) in the presence of 0.1% (w/v) Triton XT-114 and washing of the solid phase with 0.1% (w/v) EDTA, followed by direct measurement of the corresponding hydrides in four different experimental conditions. The limit of detection of the method was 3.1 ng g(-1) for As(III), 3.0 ng g(-1) for As(V), 1.5 ng g(-1) for DMA and 1.9 ng g(-1) for MMA, in all cases expressed in terms of sample dry weight. Recovery studies provided percentages greater than 91% for all considered species in spiked samples of chards and aubergines. Total toxic As found in the aforementioned samples was at the level of 90 ng g(-1); As(III) is followed by As(V), DMA and MMA which are the main species of As in chards being As(V) the main As compound in aubergines.  相似文献   

2.
Arsenic extraction in natural and spiked soil samples was studied using two main types of extractants. The extractants were phosphoric acid used alone and with the addition of reducing agents (ascorbic acid and hydroxylammonium hydrochloride). The stability of arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) in the extracts over time and under different storing conditions was assessed by means of LC-HG-AFS. A protocol was devised to extract arsenic species from soils. The protocol assures the stability of the original sample species in the extract proposed by using an extraction solution of phosphoric acid with ascorbic acid and by purging the extracts after microwave extraction. The total As, Mn and Fe content in aqua regia and in phosphoric extracts was also measured by ICP-AES in order to perform the mass balance.  相似文献   

3.
Shraim A  Chiswell B  Olszowy H 《Talanta》1999,50(5):1109-1127
The effects on the absorbance signals obtained using HG-AAS of variations in concentrations of the reaction medium (hydrochloric acid), the reducing agent [sodium tetrahydroborate(III); NaBH(4)], the pre-reducing agent (l-cysteine), and the contact time (between l-cysteine and arsenic-containing solutions) for the arsines generated from solutions of arsenite, arsenate, monomethylarsonic acid (MMA), and dimethylarsenic acid (DMA), have been investigated to find a method for analysis of the four arsenic species in environmental samples. Signals were found to be greatly enhanced in low acid concentration in both the absence (0.03-0.60 M HCl) and the presence of l-cysteine (0.001-0.03 M HCl), however with l-cysteine present, higher signals were obtained. Total arsenic content and speciation of DMA, As(III), MMA, and As(V) in mixtures containing the four arsenic species, as well as some environmental samples have been obtained using the following conditions: (i) total arsenic: 0.01 M acid, 2% NaBH(4), 5% l-cysteine, and contact time<10 min; (ii) DMA: 1.0 M acid, 0.3-0.6% NaBH(4), 4.0% l-cysteine, and contact time <5 min; (iii) As(III): 4-6 M acid and 0.05% NaBH(4) in the absence of l-cysteine; (iv) MMA: 4.0 M acid, 0.03% NaBH(4), 0.4% l-cysteine, and contact time of 30 min; (v) As(V): by difference. Detection limits (ppb) for analysis of total arsenic, DMA, As(III), and MMA were found to be 1.1 (n=7), 0.5 (n=5), 0.6 (n=7), and 1.8 (n=4), respectively. Good percentage recoveries (102-114%) of added spikes were obtained for all analyses.  相似文献   

4.
白晶  卢秀芬  乐晓春  于波 《色谱》2003,21(6):545-548
应用液相色谱-等离子质谱联用的方法分析食品样品中的主要有机砷(一甲基砷和二甲基砷)和无机砷(三价砷和五价砷)。 采用50%(体积分数)甲醇水溶液作为萃取剂,将食品样品进行预处理,再以5 mmol/L四丁氢铵,2 mmol/L丙二酸和5%(体积分数)甲醇水溶液作为流动相(pH 5.9),C18色谱柱(150 mm×4 mm i.d., 5 μm)将样品萃取液进行液相色谱分离,最后进入等离子质谱仪定性分析。 经测定发现,新鲜蔬菜和水果样品中主要含有的无机砷为三价砷和五价砷,有机砷为二甲基砷。一甲基砷在个别样品  相似文献   

5.
Ion-pair reverse-phase HPLC-inductively coupled plasma (ICP) MS was employed to determine arsenite [As(III)], dimethyl arsenic acid (DMA), monomethyl arsenic (MMA) and arsenate [As(V)] in Chinese brake fern (Pteris vittata L.). The separation was performed on a reverse-phase C18 column (Haisil 100) by using a mobile phase containing 10 mM hexadecyltrimethyl ammonium bromide (CTAB) as ion-pairing reagent, 20 mM ammonium phosphate buffer and 2% methanol at pH 6.0. The detection limits of arsenic species with HPLC-ICP-MS were 0.5, 0.4, 0.3 and 1.8 ppb of arsenic for As(III), DMA, MMA, and As(V), respectively. MMA has been shown for the first time to experimentally convert to DMA in the Chinese brake fern, indicating that Chinese brake fern can convert MMA to DMA by methylation.  相似文献   

6.
Non-chromatographic speciation of toxic arsenic in fish   总被引:1,自引:0,他引:1  
A rapid, sensitive and economic method has been developed for the direct determination of toxic species of arsenic present in fish and mussel samples. As(III), As(V), dimethylarsinic acid (DMA), and monomethylarsonic acid (MMA) were determined by hydride generation-atomic fluorescence spectrometry using a series of proportional equations without the need of a chromatographic previous separation. The method is based on the extraction of arsenic species from fish through sonication with HNO3 3 mol l−1 and 0.1% (m/v) Triton and washing of the solid phase with 0.1% (m/v) EDTA, followed by direct measurement of the corresponding hydrides in four different experimental conditions. The limit of detection of the method was 0.62 ng g−1 for As(III), 2.1 ng g−1 for As(V), 1.8 ng g−1 for MMA and 5.4 ng g−1 for DMA, in all cases expressed in terms of sample dry weight. The mean relative standard deviation values (R.S.D.) in actual sample analysis were: 6.8% for As(III), 10.3% for As(V), 8.5% for MMA and 7.4% for DMA at concentration levels from 0.08 mg kg−1 As(III) to 1.3 mg kg−1 DMA. Recovery studies provided percentages greater than 93% for all species in spiked samples. The analysis of SRM DORM-2 and CRM 627 certified materials evidenced that the method is suitable for the accurate determination of arsenic species in fish.  相似文献   

7.
The stability of arsenic, selenium, antimony and tellurium species in water and urine (NIST SRM 2670n) as well as in extracts of fish and soil certified reference materials (DORM-2 and NIST SRM 2710) has been investigated. Stability studies were carried out with As(III), As(V), arsenobetaine, monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), phenylarsonic acid (PAA), Se(IV), Se(VI), selenomethionine, Sb(III), Sb(V) and Te(VI). Speciation analysis was performed by on-line coupling of anion exchange high-performance liquid chromatography (HPLC) with inductively coupled plasma mass spectrometry (ICP-MS). Best storage of aqueous mixtures of the examined species was achieved at 3 degrees C whereas at -20 degrees C species transformation especially of selenomethionine and Sb(V) took place and a new selenium species appeared within a period of 30 days. Losses and species transformations during extraction processes were investigated. Extraction of the spiked fish material with methanol/water led to partial conversion of Sb(III), Sb(V) and selenomethionine to two new antimony and one new selenium species. The other arsenic, selenium and tellurium species were almost quantitatively extracted. For soil spiked with MMA, PAA, Se(IV) and Sb(III), recoveries after extraction with water and sulfuric acid (0.01 mol/L) were below 20%.  相似文献   

8.
A fast, sensitive and simple non-chromatographic analytical method was developed for the speciation analysis of toxic arsenic species in cereal samples, namely rice and wheat semolina. An ultrasound-assisted extraction of the toxic arsenic species was performed with 1 mol L− 1 H3PO4 and 0.1% (m/v) Triton XT-114. After extraction, As(III), As(V), dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) concentrations were determined by hydride generation atomic fluorescence spectrometry using a series of proportional equations corresponding to four different experimental reduction conditions. The detection limits of the method were 1.3, 0.9, 1.5 and 0.6 ng g− 1 for As(III), As(V), DMA and MMA, respectively, expressed in terms of sample dry weight. Recoveries were always greater than 90%, and no species interconversion occurred. The speciation analysis of a rice flour reference material certified for total arsenic led to coherent results, which were also in agreement with other speciation studies made on the same certified reference material.  相似文献   

9.
采用微波辅助提取-液相色谱-氢化物发生-原子荧光光谱法(LC-HG-AFS)联用技术分析了太湖沉积物中砷的形态[亚砷酸(As(III))、二甲基砷酸钠(DMA)、一甲基砷酸二钠(MMA)和砷酸As(V)]。测得沉积物中以无机砷为主,且以As(V)居多。选定以1mol/L的磷酸和0.1mol/L抗坏血酸为提取液,在微波辅助萃取(功率为60W,时间12min)下,萃取率达79.84%~91.57%,回收率在94.78%~107.6%之间。4种砷的形态在0~160μg/L之间时线性良好,检测限为0.6~2.3μg/L,相对标准偏差RSD为1.62%~2.20%。方法具有简便、快速、灵敏的特点。  相似文献   

10.
Health risk associated with dietary arsenic intake may be different for infants and adults. Seafood is the main contributor to arsenic intake for adults while terrestrial-based food is the primary source for infants. Processed infant food products such as rice-based cereals, mixed rice/formula cereals, milk-based infant formula, applesauce and puree of peaches, pears, carrots, sweet potatoes, green beans, and squash were evaluated for total and speciated arsenic content. Arsenic concentrations found in rice-based cereals (63-320 ng/g dry weight) were similar to those reported for raw rice. Results for the analysis of powdered infant formula by inductively coupled plasma-mass spectrometry (ICP-MS) indicated a narrow and low arsenic concentration range (12 to 17 ng/g). Arsenic content in puree infant food products, including rice cereals, fruits, and vegetables, varies from <1 to 24 ng/g wet weight. Sample treatment with trifluoroacetic acid at 100 degrees C were an efficient and mild method for extraction of arsenic species present in different food matrixes as compared to alternative methods that included sonication and accelerated solvent extraction. Extraction recoveries from 94 to 128% were obtained when the summation of species was compared to total arsenic. The ion chromatography (IC)-ICP-MS method selected for arsenic speciation allowed for the quantitative determination of inorganic arsenic [As(III) + As(V)], dimethylarsinic acid (DMA), and methylarsonic acid (MMA). Inorganic arsenic and DMA are the main species found in rice-based and mixed rice/formula cereals, although traces of MMA were also detected. Inorganic arsenic was present in freeze-dried sweet potatoes, carrots, green beans, and peaches. MMA and DMA were not detected in these samples. Arsenic species in squash, pears, and applesauce were not detected above the method detection limit [5 ng/g dry weight for As(III), MMA, and DMA and 10 ng/g dry weight for As(V)].  相似文献   

11.
CZE for the speciation of arsenic in aqueous soil extracts   总被引:2,自引:0,他引:2  
We developed two separation methods using CZE with UV detection for the determination of the most common inorganic and methylated arsenic species and some phenylarsenic compounds. Based on the separation method for anions using hydrodynamic sample injection the detection limits were 0.52, 0.25, 0.27, 0.12, 0.37, 0.6, 0.6, 1.2 and 1.0 mg As/L for phenylarsine oxide (PAO), p-aminophenylarsonic acid (p-APAA), o-aminophenylarsonic (o-APAA), phenylarsonic acid (PAA), 4-hydroxy-3-nitrobenzenearsonic acid (roxarsone), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenite or arsenious acid (As(III)) and arsenate (As(V)), respectively. These detection limits were improved by large-volume sample stacking with polarity switching to 32, 28, 14, 42, 22, 27, 26 and 27 microg As/L for p-APAA, o-APAA, PAA, roxarsone, MMA, DMA, As(III) and As(V), respectively. We have applied both methods to the analysis of the arsenic species distribution in aqueous soil extracts. The identification of the arsenic species was validated by means of both standard addition and comparison with standard UV spectra. The comparison of the arsenic species concentrations in the extracts determined by CZE with the total arsenic concentrations measured by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) indicated that CZE is suited for the speciation of arsenic in environmental samples with a high arsenic content. The extraction yield of phenylarsenic compounds from soil was derived from the arsenic concentrations of the aqueous soil extracts and the total arsenic content of the soil determined by ICP-AES after microwave digestion. We found that 6-32% of the total amount of arsenic in the soil was extractable by a one-step extraction with water in dependence on the type of arsenic species.  相似文献   

12.
建立了稻米中砷酸根[As(Ⅴ)]、亚砷酸根[As(Ⅲ)]、砷甜菜碱(AsB)、一甲基砷(MMA)和二甲基砷(DMA)的液相色谱-电感耦合等离子体质谱(LC-ICP-MS)检测方法。以0.3 mol/L硝酸水溶液为提取试剂,样品在石墨消解仪中于95 ℃消解1.5 h,上清液供LC-ICP-MS分析。5种砷形态采用Dionex IonPac AS19阴离子交换柱(250 mm×4 mm)分离,经ICP-MS检测。比较了4种提取液对稻米中5种砷形态的提取效率,并对提取溶剂的浓度、提取温度和提取时间等条件进行了优化。通过加标回收试验结合测定标准物质考察了方法准确度及精密度,在2个加标水平上各形态的回收率为89.6%~99.5%,RSD(n=5)不大于3.6%,大米标准物质中各形态之和的测定结果与其标准值吻合,5种砷形态的线性范围AsB和DMA为0.05~200 μg/L,As(Ⅲ)和MMA为0.10~400 μg/L,As(V)为0.15~600 μg/L,方法检出限为0.15~0.45 μg/kg。结果表明,本方法简单、灵敏、耐用,可用于稻米中5种砷形态的准确定量和风险评估。  相似文献   

13.
The application of ion-pair reversed phase chromatography (HPLC) and inductively coupled plasma mass spectrometry to the determination of six species of arsenic is described: arsenious acid (AsIII), arsenic acid (AsV), monomethylarsinic acid (MMA), dimethylarsinic acid (DMA), arsenocholine (AsC) and arsenobetaine (AsB) in marine biota and in natural fresh water. The coupling conditions of HPLC-ICP-MS are given and also the evaluation of the extraction procedure applied to determine these species in marine organisms. The limits of detection are between 6 and 25 g.l–1.  相似文献   

14.
A sequential arsenic extraction method was developed that yielded extraction efficiencies (EE) that were approximately double those using current methods for terrestrial plants. The method was applied to plants from two arsenic contaminated sites and showed potential for risk assessment studies. In the method, plants were extracted first by 1:1 water-methanol followed by 0.1 M hydrochloric (HCl) acid. Total arsenic in plant and soil samples collected from contaminated sites was mineralized by acid digestion and detected by inductively coupled plasma-atomic emission spectrometry (ICP-AES) and hydride generation-atomic absorption spectrometry (HG-AAS). Arsenic speciation was done by high performance liquid chromatography coupled with HG-AAS (HPLC-HGAAS) and by HPLC coupled with ICP-mass spectrometry (HPLC-ICP-MS). Spike recovery experiments with arsenite (As(III)), arsenate (As(V)), methylarsonic acid (MA) and dimethylarsinic acid (DMA) showed stability of the species in the extraction processes. Speciation analysis by X-ray absorption near edge spectroscopy (XANES) demonstrated that no transformation of As(III) and As(V) occurred due to sample handling. Dilute HCl was efficient in extracting arsenic from plants; however, extraction and determination of organic species were difficult in this medium. Sequential extraction with 1:1 water-methanol followed by 0.1 M-HCl was most useful in extracting and speciating both organic and inorganic arsenic from plants. Trace amounts of MA and DMA in plants could be detected by HPLC-HGAAS aided by the process of separation and preconcentration of the sequential extraction method. Both organic and inorganic arsenic compounds could be detected simultaneously in synthetic gastric fluid extracts (GFE) but EEs by this method were lower than those of the sequential method. The developed sequential method was shown to be reliable and applicable to various terrestrial plants for arsenic extraction and speciation.  相似文献   

15.
王振华  何滨  史建波  阴永光  江桂斌 《色谱》2009,27(5):711-716
建立了一种利用高效液相色谱-双通道原子荧光检测联用同时进行砷和硒形态分析的方法。以10 mmol/L NH4H2PO4溶液(pH 5.6)(添加2.5%(体积分数)的甲醇)为流动相,在12 min内同时分离了三价砷(As(III))、一甲基砷(MMA)、二甲基砷(DMA)、五价砷(As(V))、硒代胱氨酸(SeCys)、硒代蛋氨酸(SeMet)和四价硒[Se(IV)]等化合物。As(III)、DMA、MMA、As(V)、SeCys、SeMet和Se(IV)的检出限分别为1,3,2,3,4,18和3 μg/L (进样量为200 μL),5次测定的相对标准偏差为1.9%~6.1%(As 100 μg/L, Se 300 μg/L)。应用该方法对人体尿样及硒酵母片中砷和硒的形态进行了分析,目标物在尿样中的加标回收率为83%~108%,在硒酵母片中的加标回收率为88%~105%。实验结果表明,该方法可用于尿样及药品中砷和硒形态的日常分析。该方法减少了样品的分析时间和试剂用量,降低了工作强度,提高了工作效率。  相似文献   

16.
Shraim A  Chiswell B  Olszowy H 《The Analyst》2000,125(5):949-953
Simple and inexpensive methods for the speciation of arsenite, arsenate, monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) in environmental water samples were developed. In these methods a hydride generation-atomic absorption spectrometry (HG-AAS) technique was employed and perchloric acid (as a reaction medium), L-cysteine (as a pre-reducing agent for a certain contact time between its addition and analysis) and sodium tetrahydroborate(III) (NaBH4, as a reducing agent) were used. The use of L-cysteine greatly enhances the absorption signals of all four arsenic species at low acid concentration (0.001-0.04 M). The methods developed for the determination of total arsenic and total inorganic arsenic and speciation of the four arsenic species in environmental water samples are as follows. (i) DMA: 0.005 M acid and 0.04% NaBH4 in the absence of L-cysteine. DMA can also be speciated in the presence of L-cysteine as follows: 2 M acid, 2.5% L-cysteine after a contact time of approximately 5 min and 0.6% NaBH4. (ii) As(III): 5 M acid and 0.08% NaBH4 in the absence of L-cysteine. (iii) Total inorganic arsenic (As(III) + As(V)]: 8 M acid and 0.6% NaBH4 in the absence of L-cysteine. (iv) Total arsenic: 0.01 M acid, 5% L-cysteine after a contact time of 5 min and 2% NaBH4. (v) MMA: 8 M acid, 3% L-cysteine after a contact time of 50 min and 0.6% NaBH4. (vi) As(V): by difference. Detection limits and recoveries of added spikes for all analyses were found to be 0.5-1.7 ppb and 90-112% respectively.  相似文献   

17.
A method to separate and quantify two inorganic arsenic species As(III) and As(V) and two organic arsenic species, monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), by HPLC-ICP/MS has been developed. The separation of arsenic species was achieved on the anionic exchange column IonPac AS11 (Dionex) with NaOH as mobile phase. The technique was successfully applied to analyze extracts of two contaminated soils, sampled at a former tannery site (soil 1) and a former paint production site (soil 2). The soils were extracted at pH values similar to the natural environment. Extractions were performed at different pH values with 0.3 M ammonium oxalate (pH = 3), milli-Q water (pH = 5.8), 0.3 M sodium carbonate (pH = 8) and 0.3 M sodium bicarbonate (pH = 11). No organically bound arsenic was found in the extracts. As(V) was the major component. Only up to 0.04% of the total arsenic contained in soil 1 were mobilized. The highest amount of extracted arsenic was found at the highest pH. In the milli-Q water extract of soil 1 As(III) and As(V) were found. High amounts of As(V) were found in the extracts of soil 2. Up to 20% of the total arsenic bound to soil 2 constituents were released. The results show that the mobilization of arsenic depended on the pH value of the extraction solution and the kind of extracted soil. Dramatic consequences have to be expected for pH changes in the environment especially in cases where soils contain high amounts of mobile arsenic.  相似文献   

18.
Ti (IV)-modified vinyl phosphate magnetic nanoparticles (Fe3O4@SiO2@KH570-PO4-Ti (IV)) was prepared for simultaneous extraction of multiple arsenic species, followed by high performance liquid chromatography (HPLC)– inductively coupled plasma mass spectrometry (ICP-MS) analysis. Inorganic arsenic (iAs), dimethyl arsenic acid (DMA), monomethyl arsenic acid (MMA), p-amino phenyl arsenic acid (p-ASA), 4-hdroxyphenylarsenic acid (4-OH), phenyl arsenic acid (PAA), and 3-nitro-4-hydroxyphenylarsenic acid (ROX) were investigated as interest analytes. It was found that they were quantitatively adsorbed on Fe3O4@SiO2@KH570-PO4-Ti (IV) at pH 5, and desorbed completely with 0.1 mol/L sodium hydroxide solution. Enrichment factor of 100-fold was obtained by consuming 100 mL sample solution. Under the optimal conditions, the method combining MSPE with HPLC-ICP-MS presented a linear range of 1–5000 ng/L for seven arsenic species. The limits of detection were 0.39, 0.60, 0.23, 1.85, 0.54, 0.48, and 0.84 ng/L for DMA, MMA, p-ASA, iAs, 4-OH, PAA, ROX, with the relative standard deviations (c = 10 ng/L, n = 7) of 3.6, 3.9, 5.5, 12.4, 6.1, 5.8, 5.0, respectively. The accuracy of the method was validated by analyzing BCR 627 Tuna fish. The application potential of the method was further evaluated by chicken muscle and liver samples. No target arsenic species were detected in these samples, and good recoveries (80.6–123%) were obtained for the spiked samples at low, medium, and high concentration levels.  相似文献   

19.
Kitagawa F  Shiomi K  Otsuka K 《Electrophoresis》2006,27(11):2233-2239
CE with indirect UV and mass-spectrometric detection was used for the simultaneous determination of arsenic acid (As(V)), arsenous acid (As(III)), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), trimethylarsine oxide (TMAO), tetramethylarsonium ion (TMA(+)), arsenobetaine (AB), and arsenocholine (AC). In the CE-indirect UV analysis, a baseline separation of arsenic species was successfully achieved by using a basic background solution (BGS) for anions and an acidic BGS for cations, respectively. The LOD values in CE-indirect UV for the individual analytes were 7.8, 12.5, 7.8, 12.5, 62.5, 125, 250, and 62.5 ppm, respectively. To achieve sensitive and selective analysis, CE coupled with ESI-MS was applied to the determination of arsenic compounds. The organic arsenic species were successfully separated with a higher sensitivity by CE-MS using the acidic BGS. The LODs in CE-MS for MMA, DMA, TMAO, TMA(+), AB, and AC were 1.0, 0.1, 0.01, 0.1, 0.01, and 0.01 ppm, respectively. In contrast, the analysis of inorganic arsenic species (As(V) and As(III)) resulted in a lower detectability in CE-MS compared to that obtained with the CE-indirect UV analysis. However, the speciation of eight arsenics by CE-MS was successfully achieved in a single run by switching the ESI polarity during MS detection.  相似文献   

20.
Vela NP  Heitkemper DT  Stewart KR 《The Analyst》2001,126(7):1011-1017
Arsenic present in freeze-dried carrots was extracted using accelerated solvent extraction (ASE). Several parameters, including selection of the dispersing agent, extraction time, number of extraction cycles, particle size and extraction temperature, were evaluated to optimize the ASE method. Filtering and treatment with C-18 SPE cartridges were also evaluated as part of the sample preparation procedure before speciation analysis. The method was validated by spiking single arsenical and mixed arsenical standards on the dispersing agent and on portions of freeze-dried carrot prior to extraction. LC-ICP-MS was used to determine individual arsenic species in the carrot extracts. A weak anion-exchange column was used for the separation of As(III), As(v), monomethylarsonic acid (MMA), dimethylarsinic acid and arsenobetaine. Optimized sample preparation conditions were applied to the extraction of arsenic in nine freeze-dried carrot samples. Total arsenic concentration in the carrot samples ranged from less than 20 ng g(-1) to 18.7 microg g(-1), dry mass. Extraction efficiency, defined as the ratio of the sum of individual arsenic species concentrations to total arsenic, ranged from 80 to 102% for freeze-dried carrots with arsenic concentrations greater than the limit of quantitation. Inorganic As(III) and As(v) were the only species found in samples that contained less than 400 ng g(-1) total arsenic. MMA and an unidentified arsenic compound were present in some of the samples with higher total arsenic content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号