首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
光学显微镜与其他光学系统比较起来其景深特别短,且放大倍数越高,数值孔径越大,景深越短.计算表明(考虑到人眼的调节深度),放大倍数为100倍时,其景深为48μm,而放大500倍时,景深仅有28μm.因此,如果能提高显微镜的观察深度,无疑是有价值的.另一方面,在显微镜下观察的标本必须染色,这样,任何村本的自然色通过染色以后都不复存在.当切片染色以后,活的组织都将死亡.因此,如果可以再现一个自然色的标本.并用普通光学显微镜观察,则可获得较大的景深,从而扩大了光学显微镜的观察范围.利用全息的共轭再现实象,通过显微镜进行逐层调焦,是提高显微镜…  相似文献   

2.
苏黎世IBM实验室Hans Werner Fink和他的研究组研制出一种全息电子显微镜,首次为生物学家开辟了可观察生命的微秒级化学过程的新途径.这种显微镜用的是钨针尖电子源.针尖仅有一个原子大小,它发射具有类似激光特征的电子束,利用它能进行延续仅100ns的三维快速摄影. 常规电子显微镜与光学显微镜工作原理相同,电子束射经物体后由透镜加以放大.遗憾的是生物学家以前所能用的电子显微镜电子能量高达150keV.电子带有如此高的能量不仅会损坏样品,而且能直接穿过碳原子而不被它散射,因此不能对碳为基础的分子成象.为此,DNA和其他有机分子的样品…  相似文献   

3.
《光谱实验室》2007,24(1):136
1931年鲁斯卡在柏林大学获得工程师证书,1934年获得博士学位。那时,他在科学界已有了声望。鲁斯卡认为,由于电子具有波的特性(这是德布罗意推断,戴维森证明了的),因此对它可以作与光波相类似的处理。由于电子带有电荷,它们能受磁场作用,像光波一样被透镜聚焦起来。那么,为什么不可以有一个“电子显微镜”呢?由于波长越短,放大作用越大;电子波的波长比一般光波短得多,因此电子显微镜的放大作用应该比一般的光学显微镜大得多。  相似文献   

4.
两年前,在我校普通物理光学实验课的《显微镜》实验中,有测量显微镜总放大倍数的内容。方法是一只眼睛通过(自己组装的)显微镜看放大象,一只眼睛在显微镜外直接看一支放在明视距离的尺,当它们二者没有视差时再进行读数,测出象长,进而算出显微镜总放大倍数。这方法虽然简单,但准确度太差,而且学生不易掌握。为解决此问题,我们设计了一个新的测量方法,并已面向学生进行了两年的教学实践,效果还好,现作如下介绍。 (一)测量方法及原理 用测微尺某两根刻线(已知其距离为y)作为生物显微镜的物,经显微镜放大后,其距离为x,那么该显微镜的总放大倍数…  相似文献   

5.
姜美玲  郑立恒  池骋  朱星  方哲宇 《物理学报》2017,66(14):144201-144201
表面等离激元以其独特的光学性质广泛应用于纳米尺度的局域电磁场增强、超高分辨成像及微弱光电探测.阴极荧光是电子与物质相互作用而产生的光学响应,利用电子束激发金属纳米结构能够实现局域等离激元共振,并在亚波长尺度实现对共振模式的调控,具有超高空间分辨的成像特点.阴极荧光探测通常结合扫描电子显微镜或透射电子显微镜而实现,目前己被应用于表面等离激元的探测及共振模式的分析.本文从阴极荧光物理机理出发,综述了单一金属纳米结构和金属耦合结构的等离激元共振模式阴极荧光研究进展,并总结了阴极荧光与角分辨、时间分辨以及电子能量损失谱等关键技术相结合的应用,进一步分析了其面临的关键问题,最后展望了阴极荧光等离激元研究方向.  相似文献   

6.
基于有较大的焦深的普通光学显微镜及3D成像软件,利用自制的可绕固定轴的升降平台及光纤辐照形态,根据视差原理构建了一个测量小型样品的三维表面参数的测试系统。以外形较复杂的医用牙科钻头为样品,研究了显微镜的放大倍数、用于构建三维图像的两幅相似图像的夹角与样品表面参数测量值之间的关系。通过与样品的标称值对比,实验中所用的毫米量级的样品,在合适的物镜组放大倍数及合适的夹角下,相对误差在5%范围内,表明所建立的测量系统可用于尺寸较小的样品表面参数的测量。  相似文献   

7.
 传统的光学显微镜是以光学透镜为主体,利用透镜能将物体放大成像的功能而制成的。一般地,单级透镜能将物体放大几十倍,级联使用可达到千倍以上。制造放大倍数更大,分辨率更高的显微镜系统将遇到许多不可逾越的技术上的困难。从根本上说,光的衍射效应限制了光学显微镜进一步提高分辨率的可能性。  相似文献   

8.
扫描隧道显微镜   总被引:1,自引:0,他引:1  
 1982年,Binning和Rohrer研制成世界上第一台扫描隧道显微镜STM(ScanningTunelingMicroscope),是目前唯一具有原子级分辨率的实空间成像技术,当这两位科学家用STM观察到高序石墨表面原子的图像时,人们对微观世界的认识一下子从幻想和抽象的分析飞跃到对原子的直接观察和操纵.STM和其它的传统显微镜相比,光学显微镜、扫描电子显微镜的分辨率不够,而高分辨的透射电子显微镜虽然能够达到较高的分辨率,可它的制样异常麻烦,破坏了样品,而且在测量过程中离不开真空环境.STM因其可直接观察物体表面原子结构而不会对样品表面造成任何损伤.  相似文献   

9.
应用Compton散射模型、1维等离子体光子晶体模型和数值计算方法,研究太赫兹波段介质微腔光学特性,给出了系统反射率、反射相移和相位穿透深度修正方程和实验验证。结果表明:与散射前相比,系统中心波长左移15 ,这是因散射使等离子体层中电子与光子碰撞频率增大效应导致系统振荡频率增大的缘故;反射相移在截止区与波长呈准线性关系,中心波长处相对 有一定偏离,这是因散射使等离子体层中电子辐射阻尼增强效应导致系统振荡频率减小的缘故;禁带区相位穿透深度增大,这是因散射与入射光形成的耦合光与入射光在禁带区的相位不同,导致入射光禁带对于耦合光产生局部失效的缘故。谐振峰左移15 ,强度提高了22倍,这是因散射产生的等离子体频率和电子辐射阻尼增大效应使系统中心波长左移,透射几率增大,从而导致透射禁带两个谐振峰左移和谐振峰强度提高的缘故。  相似文献   

10.
大视场高分辨率显微工业电视镜头设计   总被引:1,自引:0,他引:1  
随着CMOS、CCD探测器的广泛应用及其分辨率的不断提高,人们对电视镜头的分辨率提出了更高的要求。将显微工业电视镜头成像原理与传统显微镜进行了比较,并利用光学设计软件ZEMAX进行光学效果的模拟,给出了数值孔径为0.08,光学放大倍数为1,焦距为38mm,视场直径为8mm,全视场角为10°,分辨率为200万像素的光学系统设计结果。所设计的显微工业电视镜头可用于工业生产检测。  相似文献   

11.
应用Compton散射模型、1维等离子体光子晶体模型和数值计算方法,研究太赫兹波段介质微腔光学特性,给出了系统反射率、反射相移和相位穿透深度修正方程和实验验证。结果表明:与散射前相比,系统中心波长左移15 ,这是因散射使等离子体层中电子与光子碰撞频率增大效应导致系统振荡频率增大的缘故;反射相移在截止区与波长呈准线性关系,中心波长处相对 有一定偏离,这是因散射使等离子体层中电子辐射阻尼增强效应导致系统振荡频率减小的缘故;禁带区相位穿透深度增大,这是因散射与入射光形成的耦合光与入射光在禁带区的相位不同,导致入射光禁带对于耦合光产生局部失效的缘故。谐振峰左移15 ,强度提高了22倍,这是因散射产生的等离子体频率和电子辐射阻尼增大效应使系统中心波长左移,透射几率增大,从而导致透射禁带两个谐振峰左移和谐振峰强度提高的缘故。  相似文献   

12.
张大忠  孙官清 《物理》1998,27(5):291-293
报道了电子回旋共振等离子分解CH4-NH3制备成两种CN膜,退火后,无衬底膜裂解成不同粗细的CN纤维,在电子显微镜下观察,纤维类似晶须,呈树枝状.放大倍数提高至3000倍后,发现单根纤维由不同结构的团簇构成.在600℃温度下退火4h,未发现有石墨化趋势,表明纤维有较高的热稳定性.  相似文献   

13.
扫描透射电子显微镜是透射电子显微镜的一种,近几年随着球差校正器的问世,扫描透射电子显微镜的分辨率达到亚埃级,结合能量分辨率为亚电子伏特的电子能量损失谱,可以对材料进行高空间分辨率及高能量分辨率的微结构和成分分析。文章简述了扫描透射电子显微镜的发展历程和工作原理,重点讲述了高角环形暗场像的成像机理以及基于高角环形暗场像对材料结构和成分进行分析的原理和应用;电子能量损失谱的成谱过程、谱的特征及其在材料化学和电子结构分析方面的优势和主要应用。  相似文献   

14.
利用康普顿散射实现太赫兹皮秒脉冲的分析   总被引:1,自引:0,他引:1       下载免费PDF全文
 研究了利用微波与电子束团的康普顿散射实现太赫兹的方法、光子产额和辐射功率。推导出了单个电子产生的太赫兹的光子产额和辐射功率表达式,也推导出了电子束团产生的太赫兹的光子总产额和辐射总功率表达式。结果发现:利用微波与电子束团发生康普顿垂直散射,可以产生太赫兹皮秒脉冲;单个电子产生的太赫兹光子产额与微波功率、微波波长成正比,与微波束截面积成反比;单个电子产生的太赫兹辐射功率与微波功率、电子Lorentz因子的平方成正比,与微波束截面积成反比;电子束团产生的太赫兹光子总产额与微波功率的平方、微波波长的平方成正比,与微波束截面积的平方成反比;电子束团产生的太赫兹辐射总功率与微波功率的平方、微波波长以及电子Lorentz因子的平方成正比,与微波束截面积的平方成反比。  相似文献   

15.
InGaN量子点的诱导生长和发光特性研究   总被引:1,自引:1,他引:0  
降低InGaN的维数是提高GaN基发光器件发光效率的一种非常有效的方法,本文的工作主要集中在高密度InGaN量子点的生长和分析上。在MOCVD设备上,经过钝化和低温两个特殊工艺条件,在高温CaN表面生长了一层低温岛状GaN.形成表面形貌的起伏,进而导致表面应力的不均匀分布。在这一层低温岛状GaN的诱导性作用下生长并形成InGaN量子点。通过原子力显微镜、透射电子显微镜和光致发光谱对其徽观形貌和光学性质进行了观察和研究。从原子力显微镜以及透射电子显微镜观察得到的结果表明:InGaN量子点为平均直径约30nm、高度约25nm、分布较均匀的圆锥,其密度约10^11cm^-2。室温下,InGaN量子点材料的PL谱强度大大超出相同条件生长的InGaN薄膜材料。这些现象表明,用InGaN量子点代替普通InGaN薄膜.有望获得发光效率更高的GaN基发光器件。  相似文献   

16.
用普通像机和普通胶卷进行显微摄影刘东华,孙朝晖(新乡医学院)(滨州医学院)我们用普通海鸥DF像机和普通全色胶卷,对寄生虫等标本显微摄影,效果不错,介绍如下.所用的显微镜是普通光学显微镜,物镜4X,目镜5×.光源为100W的白炽灯,到聚光镜的距离为8c...  相似文献   

17.
扫描隧道显微镜   总被引:1,自引:0,他引:1  
十七世纪末期,Leeuwenhoek发明光学显微镜,用来观察单细胞和细菌.虽然现代光学显微镜已达到了高度发展,但由于它本身的物理局限性(平均可见光的波长比单个原子尺度大两千倍),不可能用于探测原子结构的秘密. 电子显微镜是一种高分辨率、用途广泛的物质分析工具,它非常成功地提供了晶体材料的体特性.但是,除了特殊的条件外,用电子显微镜分析表面原子结构是困难的. 离子显微镜是一种结构简单,对表面特别灵敏,能直接观察表面单个原子的表面分析工具.三十多年来,场离子显微镜已成功地提供了各种耐熔金属和某些半导体单晶材料表面原子结构,以及表…  相似文献   

18.
应用Compton散射模型、1维等离子体光子晶体模型和数值计算方法,研究太赫兹波段介质微腔光学特性,给出了系统反射率、反射相移和相位穿透深度修正方程和实验验证.结果表明:与散射前相比,分布式布拉格反射镜系统中心波长左移15μm,这是因散射使等离子体层中电子与光子碰撞频率增大效应导致系统振荡频率增大的缘故;反射相移在截止区与波长呈准线性关系,中心波长处相对π有一定偏离,这是因散射使等离子体层中电子辐射阻尼增强效应导致系统振荡频率减小的缘故;禁带区相位穿透深度增大,这是因散射与入射光形成的耦合光与入射光在禁带区的相位不同,导致入射光禁带对于耦合光产生局部失效的缘故.谐振峰左移15μm,强度提高了22倍,这是因散射产生的等离子体频率和电子辐射阻尼增大效应使系统中心波长左移,透射几率增大,从而导致透射禁带两个谐振峰左移和谐振峰强度提高的缘故.  相似文献   

19.
电子束与烟气相互作用机制模拟分析   总被引:2,自引:0,他引:2       下载免费PDF全文
 电子束在烟气中穿透深度和剂量分布将直接影响废气中硫、氮氧化物的脱除效率。通过理论计算和蒙特卡罗模拟计算得到不同能量电子穿过各种厚度加速器箔窗后能量损失情况;对不同入射能量电子束在烟气中透射深度和轨迹分布进行了模拟计算。结果表明:电子束反应最佳能量为700 keV;利用产生1 m长线状束流的电子加速器进行双面照射,烟道反应室横截面最佳尺寸为1.0 m×3.5 m。  相似文献   

20.
两个独立的美国研究小组今年3月在Science发表文章,宣布制得具有放大能力的“超级透镜”.所谓超级透镜是用负折射率材料制造的透镜,具有突破光波衍射极限的神奇能力,被认为是下一代光学显微镜的希望所在.这两个美国研究小组的突破标志着用负折射率材料制造的超级透镜即将投入实用,光学显微镜将突破光波波长的限制,在蛋白质、病毒和DNA分析等领域大放光彩.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号