首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 468 毫秒
1.
选择苯甲醚、2-溴苯甲醚、3-溴苯甲醚作为锂离子电池有机电解液的防过充添加剂. 采用循环伏安测试、恒流充放电测试、电化学阻抗分析、扫描电镜分析等手段, 研究三种添加剂的防过充作用效果, 以及对LiNi1/3Co1/3Mn1/3O2 (NCM)正极性能的影响. 结果表明: 三种添加剂均具有合适的氧化电位和良好的氧化还原特性, 能够提高锂离子电池的防过充性能. 其中2-溴苯甲醚的防过充作用效果最优, 电池经0.1 C充电长达近50 h后才达到5 V截止电压, 且可承受过充的次数相对最多, 但该添加剂对NCM正极的循环性能影响较大; 苯甲醚的防过充效果仅次于2-溴苯甲醚, NCM正极在添加有苯甲醚的电解液中循环性能良好, 0.2 C充放电循环80次后容量仍能保持93.8%左右. 含上述三种添加剂的电池经过充后, 均会有一部分氧化还原产物吸附在NCM正极表面, 增加电池的整体阻抗, 其中含2-溴苯甲醚的电池表现最为明显.  相似文献   

2.
通过在锂离子电池电解液中添加4-溴苯甲醚(4-Bromoanisole, 简称4BA)来提高锂离子电池的过充保护能力. 对电池分别进行了过充实验、循环伏安扫描、红外光谱分析、交流阻抗和容量特性测试, 实验结果表明, 在1 mol•L-1 LiPF6/EC+DEC+DMC(质量比1/1/1)中添加5% 的4BA(质量分数)时, 当外加电压为4.4 V(相对于Li/Li+)时, 4BA开始发生电聚合反应且生成高分子聚合物膜, 使电池内阻增大而阻止电压的升高, 从而使电池处于比较安全的状态. 该体系正常充放电过程中, 添加5%的4BA对电池容量特性基本没有影响, 4BA 的防过充机理为阻断机理.  相似文献   

3.
联苯用作锂离子电池过充安全保护剂的研究   总被引:8,自引:0,他引:8  
以联苯在高电压下的电聚合反应用于锂离子电池过充保护.实验表明,于电解液中加入的联苯可在4.5~4.75V(相对于Li/Li+)下发生氧化电聚合反应,生成的导电聚合物可使过充的电池自动放电至更安全的充电状态.同时,电聚合产物使电池内阻升高、内压增大,从而提高了与其联用的保护装置的灵敏度.在正常充放电状态下,联苯的加入基本不影响电池的综合电性能.  相似文献   

4.
设计合成了单氰基功能化的2, 5-二叔丁基-1-(β-氰基乙氧基)-4-甲氧基苯(RS-MCN)和双氰基功能化的2, 5-二叔丁基-1, 4-(β-氰基乙氧基)苯(RS-DCN),并用作氧化还原过充添加剂开展了其在锂离子电子中的应用研究。通过丙烯氰和2, 5-二叔丁基对苯二酚的迈克尔加成反应可高效合成RS-MCN和RS-DCN,氰乙基取代后的过充保护添加剂分子的可逆氧化还原电位分别为4.02、4.08 V(vs Li/Li+);并且单氰基取代的RS-MCN在商业碳酸酯电解液1 mol·L-1 LiPF6/EC+DEC+EMC(1:1:1,体积比)中的溶解度可高达0.3 mol·L-1。RSMCN和RS-DCN对LiFePO4/Li电池的过充保护性能和电极相容性也进行了深入的研究,实验结果表明:RSMCN具有更好的过充保护性能和电极相容性,其5 V截止电压过充保护时间可超过1200 h,100%过充保护大于90周循环;0.3 mol·L-1 RS-MCN的添加能使100%过充的LiFePO4/Li电池在2.5C倍率条件下正常循环,其放电比容量达153.5 mAh·g-1。此外,RS-MCN的添加对LiFePO4/Li电池在2.5-3.8 V条件下的循环性能有明显改善,添加有RS-MCN的电池在60周的循环后容量保持率高达94.4%,而商业电解液的电池在60周循环后的容量保持率降至84.3%。因此,氰基功能化RS-MCN是一类具有潜在应用前景的过充保护添加剂。  相似文献   

5.
在锂离子电池电解液1 mol·L-1 LiPF6/(碳酸乙烯酯(EC)+碳酸二乙酯(DEC)+碳酸甲乙酯(EMC) (1:1:1,体积比))中分别添加1,2-二甲氧基-4-硝基苯(DMNB1)和1,4-二甲氧基-2-硝基苯(DMNB2)作为防过充添加剂.采用循环伏安(CV)、恒流充放电、过充测试、电化学阻抗谱(EIS)、扫描电子显微镜(SEM)等手段研究了DMNB1和DMNB2 的防过充效果, 以及添加剂与LiNi1/3Co1/3Mn1/3O2材料的相容性. 结果表明: DMNB1 和DMNB2 的氧化电位都在4.3 V (vs Li/Li+)以上, 且均能显著提高电池的过充保护性能. 100%过充和5 V截止电压过充测试表明, DMNB1 的防过充性能优于DMNB2. 采用基础电解液、添加0.1 mol·L-1 DMNB1 和添加0.1 mol·L-1DMNB2 电解液的LiNi1/3Co1/3Mn1/3O2/Li 电池, 0.2C 倍率下循环100 次, 容量保持率分别为98.4%、95.9%和68.1%. 证明硝基在添加剂苯环上的取代位置和其电化学性能之间有着密切联系.  相似文献   

6.
纳米纤维聚苯胺膜在不锈钢电极表面的生长过程   总被引:3,自引:0,他引:3  
研究了脉冲电流法(PGM)聚合苯胺时, 纳米纤维聚苯胺(PANI)膜在不锈钢(SS)电极表面的生长过程. 用计时电位法和扫描电子显微镜(SEM)表征了聚苯胺生长过程的电化学特征和微观形貌; 并通过循环伏安(CV)法研究了苯胺的聚合速率. 结果表明, 聚苯胺的生长经历了两个阶段, 首先是在裸不锈钢电极表面上形成颗粒状聚苯胺, 此时聚合电位约为1.10 V, 经历了30 s后, 电极表面被一层颗粒状聚苯胺膜所覆盖; 在此基础上, 聚苯胺以纳米纤维状结构继续生长, 当颗粒状聚苯胺被纳米纤维状聚苯胺膜完全覆盖时, 聚合电位降至0.75 V左右并保持稳定.  相似文献   

7.
以电聚合方式,在石墨烯修饰的铅笔芯电极表面制备出2,4-二甲基苯胺的分子印迹聚合物,以零流电位变化的最大差值为指标获得最佳电聚合参数。磷酸缓冲溶液的pH为6.47,功能单体与模板分子的配比为1∶8,电位范围为–0.8~0.8 V,聚合圈数为26,洗脱时间为5 min。与2,4-二甲基苯胺结构相近的物质如4-氯苯胺、4-氨基联苯、联苯胺、邻甲苯胺等均不干扰测定。2,4-二甲基苯胺质量浓度的对数在0.121 2~605.908μg/L范围内与零流电位线性关系良好,相关系数为0.991,检出限为0.040 6μg/L。测定结果的相对标准偏差为0.84%(n=5),平均回收率为95.59%~101.70%。该电极制备简单,灵敏度高,选择性和稳定性好,适用于实际废水中2,4-二甲基苯胺的检测。  相似文献   

8.
在0.5 mol•dm-3硫酸介质中, 循环伏安法电解间甲苯胺的原位紫外可见光谱图表明聚间甲基苯胺产生在氧化铟锡导电玻璃电极表面上. 在恒电位条件下, 用原位紫外-可见光谱较详细地研究了间甲基苯胺在氧化铟锡(ITO)上的电化学聚合. 结果表明间甲基苯胺只能在较高电解电位和单体浓度足够大的条件下才能发生电化学聚合. 在0.7 V(相对于饱和的Ag/AgCl), 0.2 mol•dm-3的间甲基苯胺和0.9 V, 20 mmol•dm-3的间甲基苯的实验条件下, 尽管在ITO电极上没有发生电化学均聚合, 但原位紫外-可见光谱表明在电极表面上可能还形成低分子量的齐聚物. 在低电位0.8 V下, 电化学聚合200 mmol•dm-3间甲苯胺时, 有明显的诱导期存在. 在恒电位电解的条件下, 相应的原位紫外-可见光谱和聚合物的傅立叶变换红外光谱(FTIR)表明间甲基苯胺和对苯二胺能发生电化学共聚反应, 由于对苯二胺可能与间甲基苯胺形成了具有较强反应活性的中间体, 使得对苯二胺的加入不但促进和加速了聚合反应, 而且还结合进聚合物中形成了phenazine或类似于phenazine的环结构.  相似文献   

9.
应用碳包覆固相法合成锂离子电池Li3V2(PO4)3正极材料.X射线衍射、扫描电子显微镜表征材料的结构和观察表面形貌.材料的电阻和电化学性能测试表明,碳包覆Li3V2(PO4)3材料可避免颗粒团聚,减小颗粒尺寸,提高材料电导率,改善其电极的电化学性能.  相似文献   

10.
以铅笔芯电极(PGE)为工作电极,铂电极为对电极,饱和甘汞电极为参比电极,在含4. 0×10-3mol/L丙烯酸、1. 0×10-3mol/L 4-氨基联苯(4-ABP)的磷酸盐缓冲溶液(PBS,p H 7. 17)中,采用循环伏安法以0. 1 V·s-1在-1. 6~1. 6 V电位范围循环扫描16圈,经超声洗脱6 min后制得4-氨基联苯印迹聚合物修饰电极(4-ABP-MIP/PGE)。零流电位法下,在4-ABP浓度0. 005~50μmol/L范围内,4-ABP-MIP/PGE的零流电位EZCP与4-ABP浓度的对数呈线性关系,检出限为1. 07 nmol/L。将该传感器用于实际样品中4-ABP的检测,平均回收率为96. 0%~102%。  相似文献   

11.
锂离子电池有机电解液材料研究进展   总被引:4,自引:0,他引:4  
综述了锂离子电池有机电解液材料的研究现状。锂离子电池有机电解液主要由电解质锂盐、有机溶剂和添加剂三个部分组成,新型电解质锂盐的研究开发可分为三个方面:(1)LiTFSI及其类似物;(2)络合硼酸锂化合物;(3)络合磷酸锂化合物。有机溶剂的研究工作主要集中在新型有机溶剂的开发上。最重要的添加剂主要有三类:(1)主要用以改善碳负极SEI膜性能的添加剂;(2)过充电保护添加剂;(3)配体添加剂。  相似文献   

12.
The electrochemical properties and overcharge protection mechanism of xylene as a new polymerizable electrolyte additive for overcharge protection of lithium ion batteries were studied by cyclic voltammetry tests, charge- discharge performance and battery power capacity measurements. It was found that when the battery was overcharged, xylene could electrochemically polymerize at the overcharge potential of 4.3—4.7 V (vs. Li/Li+) to form a thin polymer film on the surface of the cathode, thus preventing voltage runaway. On the other hand, the use of xylene as an overcharge protection electrolyte additive did not influence the normal performance of lithium ion batteries.  相似文献   

13.
锂离子电池安全性添加剂*   总被引:1,自引:0,他引:1  
作为锂离子电池的一个重要组成部分,电解质对电池的性能有重要影响。有机电解液功能添加剂是近年来锂离子电池研究中的一个热点。本文介绍了锂离子电池有机电解液阻燃剂和过充电保护剂改善电池安全性的作用机理、特点以及它们的研究应用现状,并对各种添加剂的优缺点作了简要评价。  相似文献   

14.
电解液组成对中间相石墨微球电化学性能的影响   总被引:3,自引:0,他引:3  
以2800℃热处理的煤焦油沥青基中间相石墨微球为锂离子二次电池负极材料,考察了中间相石墨微球在不同组成的电解质溶液中的电化学嵌脱锂性能.确定了试样在不同电解液中电极表面生成的SEI膜的化学组成和相对含量,剖析了共溶剂对SEI膜形成反应、膜组成和织构的影响.结果表明,在不同共溶剂的EC基电解液中,电极界面SEI膜形成的电位虽然不同,但SEI膜的化学组成基本相同,负极界面SEI膜的织构是决定电解液与电极材料相容性的关键.  相似文献   

15.
设计并合成了一系列基于苯环和环状碳酸酯的有机分子双(2,3-环碳酸甘油酯)对苯二甲酸酯、三(2,3-环碳酸甘油酯)均苯三甲酸酯和四(2,3-环碳酸甘油酯)均苯四甲酸酯,采用倍率测试、恒流充放电测试、交流阻抗测试和扫描电子显微镜测试等手段研究了这些添加剂对锂离子电池性能的影响.通过对循环20周前后球化石墨电极形貌的对比,发现含均苯四甲酸酯和均苯三甲酸酯的电解液球化石墨电极表面相对于空白电解液可形成一层致密而稳定的固体电解质中间相膜(SEI),从而优化电极-电解液的界面性能,且电池电阻增加较小;在测试电池的倍率性能时发现,均苯四甲酸酯的加入可以改善电池的倍率性能,而对苯二甲酸酯的加入则未能改善电池的循环性能.  相似文献   

16.
The conventional strategy of overcharge protection for lithium ion batteries uses redox molecules having oxidation potential higher than the cathodic materials in the electrolyte. Here we propose a novel approach by using redox molecules having reduction potentials lower than the anodic materials. This new approach is successfully demonstrated in TiO2/LiCoO2 and TiO2/LiFePO4 cells by using benzophenone molecule.  相似文献   

17.
A compound 4-tertbutyl-1,2-dimethoxybenzene (TDB) was synthesized and tested as a redox shuttle for overcharge protection of Li–LiFePO4 batteries. This isomer of tertbutyl-substituted dimethoxybenzene is miscible with the organic polar electrolytes and provides a solution for the poor solubility of ditertbutyl-substituted 1,4-dimethoxybenzenes as a redox shuttle additive. The experimental results demonstrated that the shuttle molecules added in the electrolyte cannot only provide feasible overcharge protection, but also have indiscernible detrimental influences on the charge–discharge behaviors of Li–LiFePO4 cells, showing a great prospect for practical applications in commercial rechargeable lithium batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号