首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
古振东  孙丽英 《计算数学》2020,42(4):445-456
我们在参考了相关文献的基础上,考察了一类非线性Volterra积分方程的Chebyshev谱配置法.方法中,我们将该类非线性方程转化为两个方程进行数值逼近.我们选择N阶Chebyshev Gauss-Lobatto点作为配置点,对积分项用N阶高斯数值积分公式逼近.收敛性分析结果表明数值误差的收敛阶为N(1/2)-m,其中m是已知函数最高连续导数的阶数.我们也开展数值实验证实这一理论分析结果.  相似文献   

2.
文章在误差为AANA序列的条件下,利用截尾方法及AANA序列的指数不等式,研究了非参数回归模型P-C估计量的p阶矩相合性、强相合性、完全相合性,且得到了完全相合性的收敛速度,所得结论推广和拓展了已有相关结果.最后,通过数值模拟对主要结果进行了验证.  相似文献   

3.
继文献[1],求出了谱测度集中在[-π/△,π/△]上的具有连续参数的宽平稳随机过程x(t)的相关函数,谱密度函数和谱函数的估计及它们的一致收敛速度.这些估计及一些收敛速度都是基于离散采样(x(k△),k=0,±1,±2,…)上的.  相似文献   

4.
杨水平 《计算数学》2017,39(1):98-114
本文利用Jacobi谱配置方法数值求解了一类分数阶多项延迟微分方程,并证明了该方法是收敛的,通过若干数值算例验证了相应的理论结果,结果表明Jacobi谱配置方法求解这类方程是非常高效的,同时也为这类分数阶延迟微分方程的数值求解提供了新的选择,对分数阶泛函方程的数值方法的研究有一定的指导意义.  相似文献   

5.
胡齐芽 《计算数学》1998,20(3):261-266
1.引言由于对积分算子方程来说,配置法比Galerkin法具计算量小的优点(少算一重积分),故配置法更受人们重视.但已有的文献几乎都是将配置空间取作非连续的分片多项式样条空间,以得到某种超收敛结果(如[1,2]).这种方法存在下列不足:(a)光滑核Volterra积分方程与光滑核Fredholm积分方程具完全不同的收敛性质[1],且需用不同的方法获得其加速收敛结果(比较[31与[4]),尽管Volterra积分方程在理论上被看作是Fredholm积分方程的特殊情形;(b)光滑核Volterra积分方程的配置解不具任何超收敛性,其迭代配置解也只在结点…  相似文献   

6.
郑伟珊 《计算数学》2021,43(2):253-260
本文利用雅可比谱配置方法研究弱奇异时滞Volterra积分方程,分别得到真解与近似解在L∞和L2ω-μ,0范数意义下呈现指数收敛的结论,数值仿真结果验证理论分析的正确性.  相似文献   

7.
本文考虑n维(n=2,3)可压缩流动的带有单向周期边值条件问题的数值解.我们在周期方向采用Fourier谱方法,在非周期方向采用有限元方法,从而构造了一类谱-有限元格式.文中严格分析了计算误差,得到了收敛阶的估计.  相似文献   

8.
三次样条插值函数具有良好的收敛性、稳定性与二阶光滑性.研究了借助三次样条插值函数构造的非线性动力系统数值求解方法,分析了该方法与已有的非线性动力系统数值求解方法的优缺点,刻画了误差估计且给出了数值算例.结果表明基于三次样条插值函数构造的数值方法比已有的方法收敛速度快、逼近精度高且能够很好地逼近非线性动力系统的解析解.  相似文献   

9.
在求解鞍点问题的经典Uzawa算法收敛性的基础上,对预处理Uzawa算法收敛性做出进行进一步的研究,得到其收敛的充要条件及误差传播矩阵的谱半径;并将其应用到Mini元离散求解Stokes问题中,通过数值计算验证所得结论的正确性.  相似文献   

10.
在已有文献β■的基础上得到了一个新的谱共轭参数,从而构造了一个新的谱共轭梯度法.并且新方法的搜索方向不需要任何线性搜索条件而自动下降.利用标准Wolfe线搜索,在一般假设条件下,验证了该方法是全局收敛的.  相似文献   

11.
The main purpose of this paper is to investigate the piecewise spectral collocation method for system of Volterra integral equations. The provided convergence analysis shows that the presented method performs better than global spectral collocation method and piecewise polynomial collocation method. Numerical experiments are carried out to confirm these theoretical results.  相似文献   

12.
In this paper, a shifted Jacobi–Gauss collocation spectral algorithm is developed for solving numerically systems of high‐order linear retarded and advanced differential–difference equations with variable coefficients subject to mixed initial conditions. The spatial collocation approximation is based upon the use of shifted Jacobi–Gauss interpolation nodes as collocation nodes. The system of differential–difference equations is reduced to a system of algebraic equations in the unknown expansion coefficients of the sought‐for spectral approximations. The convergence is discussed graphically. The proposed method has an exponential convergence rate. The validity and effectiveness of the method are demonstrated by solving several numerical examples. Numerical examples are presented in the form of tables and graphs to make comparisons with the results obtained by other methods and with the exact solutions more easier. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
A new spectral Jacobi rational-Gauss collocation (JRC) method is proposed for solving the multi-pantograph delay differential equations on the half-line. The method is based on Jacobi rational functions and Gauss quadrature integration formula. The main idea for obtaining a semi-analytical solution for these equations is essentially developed by reducing the pantograph equations with their initial conditions to systems of algebraic equations in the unknown expansion coefficients. The convergence analysis of the method is analyzed. The method possesses the spectral accuracy. Numerical results indicating the high accuracy and effectiveness of this algorithm are presented. Indeed, the present method is compared favorably with other methods.  相似文献   

14.
In this paper, a collocation spectral numerical algorithm is presented for solving nonlinear systems of fractional partial differential equations subject to different types of conditions. A proposed error analysis investigates the convergence of the mentioned algorithm. Some numerical examples confirm the efficiency and accuracy of the method.  相似文献   

15.
一类带弱奇异核偏积分微分方程空间谱配置方法的全局性   总被引:1,自引:0,他引:1  
借助拉普拉斯变换,运用谱配置方法研究一类线性偏积分微分方程的半离散问题,这类问题出现在粘弹性模型中.它是一种基于Gauss-Lobatto求积节点的配置方法.我们得到了空间半离散解的稳定性和收敛性结果.  相似文献   

16.
In this paper, a high‐order accurate numerical method for two‐dimensional semilinear parabolic equations is presented. We apply a Galerkin–Legendre spectral method for discretizing spatial derivatives and a spectral collocation method for the time integration of the resulting nonlinear system of ordinary differential equations. Our formulation can be made arbitrarily high‐order accurate in both space and time. Optimal a priori error bound is derived in the L2‐norm for the semidiscrete formulation. Extensive numerical results are presented to demonstrate the convergence property of the method, show our formulation have spectrally accurate in both space and time. John Wiley & Sons, Ltd.  相似文献   

17.
This paper describes a collocation method for solving constant coefficient Cauchy-type singular integral equations of index –1. A technique for reducing the set of linear equations resulting from collocation to match the number of unknows is described. The uniform convergence analysis of the resulting method is presented and convergence rates based on the smoothness of the data are given.This work was partially supported by CNPq under grant #300105/88-6(RN).  相似文献   

18.
This paper discusses a general framework for the numerical solution of multi-order fractional delay differential equations (FDDEs) in noncanonical forms with irrational/rational multiple delays by the use of a spectral collocation method. In contrast to the current numerical methods for solving fractional differential equations, the proposed framework can solve multi-order FDDEs in a noncanonical form with incommensurate orders. The framework can also solve multi-order FDDEs with irrational multiple delays. Next, the framework is enhanced by the fractional Chebyshev collocation method in which a Chebyshev operation matrix is constructed for the fractional differentiation. Spectral convergence and small computational time are two other advantages of the proposed framework enhanced by the fractional Chebyshev collocation method. In addition, the convergence, error estimates, and numerical stability of the proposed framework for solving FDDEs are studied. The advantages and computational implications of the proposed framework are discussed and verified in several numerical examples.  相似文献   

19.
In this paper, we consider the numerical approximation of stochastic partial differential equations with nonlinear multiplicative trace class noise. Discretization is obtained by spectral collocation method in space, and semi‐implicit Euler method is used for the temporal approximation. Our purpose is to investigate the convergence of the proposed method. The rate of convergence is obtained, and some numerical examples are included to illustrate the estimated convergence rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号