首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
《Journal of Energy Chemistry》2017,26(5):1007-1013
Porous carbon spheres are prepared by direct carbonization of potassium salt of resorcinol-formaldehyde resin spheres, and are investigated as CO_2 adsorbents. It is found that the prepared carbon materials still maintain the typical spherical shapes after the activation, and have highly developed ultra-microporosity with uniform pore size, indicating that almost the activation takes place in the interior of the polymer spheres. The narrow-distributed ultra-micropores are attributed to the "in-situ homogeneous activation"effect produced by the mono-dispersed potassium ions as a form of -OK groups in the bulk of polymer spheres. The CS-1 sample prepared under a KOH/resins weight ratio of 1 shows a very high CO_2 capture capacity of 4.83 mmol/g and good CO_2/N_2 selectivity of ~17-45. We believe that the presence of a welldeveloped ultra-microporosity is responsible for excellent CO_2 sorption performance at room temperature and ambient pressure.  相似文献   

2.
In this work, porous carbons with well-developed pore structures were directly prepared from a weak acid cation exchange resin (CER) by the carbonization of a mixture with Mg acetate in different ratios. The effect of the Mg acetate-to-CER ratio on the pore structure and CO(2) adsorption capacities of the obtained porous carbons was studied. The textural properties and morphologies of the porous carbons were analyzed via N(2)/77K adsorption/desorption isotherms, SEM, and TEM, respectively. The CO(2) adsorption capacities of the prepared porous carbons were measured at 298 K and 1 bar and 30 bar. By dissolving the MgO template, the porous carbons exhibited high specific surface areas (326-1276 m(2)/g) and high pore volumes (0.258-0.687 cm(3)/g). The CO(2) adsorption capacities of the porous carbons were enhanced to 164.4 mg/g at 1 bar and 1045 mg/g at 30 bar by increasing the Mg acetate-to-CER ratio. This result indicates that CER was one of the carbon precursors to producing the porous structure, as well as for improving the CO(2) adsorption capacities of the carbon species.  相似文献   

3.
The templated porous carbons were prepared from sucrose by one-pot method. In this method in which the pre-synthesis of the hard template is eliminated, the porous carbons were produced by organic-inorganic self-assembly of sucrose, tetraethyl ortosilicate (TEOS), Pluronic P123 and n-butanol in an acidic medium, and subsequent carbonization. The synthesis parameters such as sucrose amount, TEOS molar ratio and carbonization temperature were evaluated for describing their effects on the pore structures of the synthesized carbons. The prepared porous carbons were characterized by N2 adsorption, thermogravimetric analysis (TGA), Raman spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) techniques. The carbon dioxide adsorption uptakes of the obtained porous carbons were determined at 1 bar and 273 K. The templated carbon obtained with the lowest TEOS molar ratio exhibited the highest BET surface area of 1289 m2/g and micropore volume of 0.467 cm3/g, and showed the highest CO2 uptake of 2.28 mmol/g.  相似文献   

4.
以Li_2CO_3,TiO_2为原料,葡萄糖为碳源,采用固相煅烧工艺合成了亚微米级的Li_4Ti_5O_(12)/C复合负极材料.并将之与AgNO_3复合,采用固相方法制备出了Ag表面修饰的Li_4Ti_5O_(12)(AG+C)复合材料.采用XRD、SEM和TEM测试方法对材料的微结构进行了表征.结果表明,C的存在对Ag单质在Li_4Ti_5O_(12)/C颗粒表面的大量形成起到了积极的促进作用.从而很大程度地提高了Li_4Ti_5O_(12)/C的电导率,因此有效地改善了其电化学性能.在1C倍率下,Li_4Ti_5O_(12)/(Ag+C)复合材料的首次放电容量达到了164 mAh·g(-1).  相似文献   

5.
The conceptual design of yolk-shell structured Si/C composites is considered to be an effective way to improve the recyclability and conductivity of Si-based anode materials. Herein, a new type of yolk-shell structured Si/C composite(denoted as TSC-PDA-B) has been intelligently designed by rational engineering and precise control. In the novel structure, the multiple Si nanoparticles with small size are successfully encapsulated into the porous carbon shells with double layers benefiting from the strong etching effect of HF. The TSC-PDA-B product prepared is evaluated as anode materials for lithium-ion batteries(LIBs).The TSC-PDA-B product exhibits an excellent lithium storage performance with a high initial capacity of 2108 mAh g~(-1) at a current density of 100 mA g~(-1) and superior cycling performance of 1113 mAh g~(-1) over 200 cycles. The enhancement of lithium storage performance may be attributed to the construction of hybrid structure including small Si nanoparticles, high surface area, and double carbon shells, which can not only increase electrical conductivity and intimate electrical contact with Si nanoparticles, but also provide built-in buffer voids for Si nanoparticles to expand freely without damaging the carbon layer.The present findings can provide some scientific insights into the design and the application of advanced Si-based anode materials in energy storage fields.  相似文献   

6.
在超临界CO2中以活性碳为模板由正硅酸乙酯(TEOS)前体涂层焙烧法制备多孔SiO2材料。结构分析表明,超临界涂层法制备的多孔SiO2材料的比表面积、比孔容和平均孔径分别达到1147m2/g、1.4cm3/g和2.20nm,优于常规液相浸渍涂层法。并研究了活性碳含水量、超临界涂层的温度和压力等因素对涂层效果的影响,确定了较好的涂层条件。  相似文献   

7.
TiO2-SiO2复合气凝胶:常压干燥制备及性能表征   总被引:2,自引:2,他引:0  
以廉价的四氯化钛和工业水玻璃为原料,通过溶胶-凝胶法制得TiO2-SiO2复合湿凝胶,用三甲基氯硅烷(TMCS)/乙醇(EtOH)/正己烷(Hexane)混合溶液对湿凝胶进行改性,常压干燥制备了TiO2-SiO2复合气凝胶.利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、红外光谱(FTIR)、X射线衍射(XRD)及N2吸附/脱附法对复合气凝胶的形貌和性质进行了分析.结果表明,TiO2-SiO2复合气凝胶具有连续多孔结构,150℃干燥后复合气凝胶的比表面积为1 076 m2·g-1,孔体积为4.96 cm3·g-1;经550 ℃热处理后,复合气凝胶仍然具有高的孔隙率,比表面积为856 m2·g-1,孔体积为3.46 cm3·g-1.吸附和光催化降解罗丹明B的结果表明,复合气凝胶同时具有较好的吸附和光催化性能,其吸附/光催化协同作用活性优于纯SiO2气凝胶和锐钛矿TiO2粉末;且重复利用四次降解率仍然可达到89%.  相似文献   

8.
Two novel tetra-armed conjugated microporous polymers with different geometries have been designed and synthesized via Suzuki-Miyaura cross coupling polycondensation. Both polymers are stable in various organic solvents tested and are thermally stable. The pyrene-containing polymer of PrPy with the rigid pyrene unit shows a higher Brunauer-Emmet-Teller specific surface area of 1219 m~2 g~(-1) than the tetraphenylethylene-containing polymer of PrTPE(770 m~2 g~(-1)), which leads to a high CO_2 uptake ability of 3.89 mmol g~(-1) at 1.13 bar/273 K and a H_2 uptake ability of 1.69 wt% at 1.13 bar/77 K. The photocatalytic hydrogen production experiments revealed that PrPy also shows a better photocatalytic performance than PrTPE due to the higher conjugation degree and planar structure, the broader UV-visible(UV-Vis) absorption, the lower photoluminescence lifetime, and the higher specific surface area.  相似文献   

9.
Two-dimensional (2D) layered vanadium disulfide (VS_2) is a promising anode material for lithium ion batteries (LIBs) due to the high theoretical capacity.However,it remains a challenge to synthesize monodispersed ultrathin VS_2 nanosheets to realize the full potential.Herein,a novel solvothermal method has been developed to prepare the monodispersed bowl-shaped NH_3-inserted VS_2 nanosheets (VS_2).The formation of such a unique structure is caused by the blocked growth of (001) or (002) crystal planes in combination with a ripening process driven by the thermodynamics.The annealing treatment in Ar/H_2creates porous monodispersed VS_2(H-VS_2),which is subsequently integrated with graphene oxide to form porous monodispersed H-VS_2/rGO composite coupled with a reduction process.As an anode material for LIBs,H-VS_2/rGO delivers superior rate performance and longer cycle stability:a high average capacity of 868/525 mAh g~(-1) at a current density of 1/10 A g~(-1);a reversible capacity of 1177/889 mAh g~(-1) after 150/500 cycles at 0.2/1 A g~(-1).Such excellent electrochemical performance may be attributed to the increased active sites available for lithium storage,the alleviated volume variations and the shortened Li-ion diffusion induced from the porous structure with large specific surface area,as well as the protective effect from graphene nanosheets.  相似文献   

10.
单斜Li3V2(PO4)3/C复合材料的制备及其电化学性能   总被引:1,自引:0,他引:1  
以LiOH·H2O、V2O5、H3PO4和蔗糖为原料,采用软化学法制备了锂离子电池正极材料Li3V2(PO4)3/C.通过X射线衍射(XRD)、扫描电镜(SEM)对产物的结构和形貌进行表征,采用恒电流充放电、电化学阻抗考察了产物的电化学性能.结果表明.当煅烧温度达到700℃时,杂质相衍射峰消失,所得的样品为纯相的单斜Li3V2(PO4)3.颗粒粒度为1~2 μm;在3.0~4.5 V电压范围内以0.2C倍率充放电,首次放电比容量达到148.2 mAh·g-1,第50次循环比容量仍为144 mAh·g-1,容量保持率为97%,具有良好的循环性能;另外,样品还具有很好的倍率性能和高温性能.  相似文献   

11.
分别采用高温热分解法(A)和熔盐法(B)制备了锂离子电池负极材料Fe2O3A和Fe2O3B,其结构与形貌经XRD和SEM表征。分析结果表明,Fe2O3A为三方晶相,呈片状结构团聚而成的类球形颗粒;Fe2O3B随着制备温度的升高,从立方相转变为三方相。充放电测试结果表明,于550℃制备的Fe2O3A和Fe2O3B初始容量分别高达1 312.1 mAh.g-1和1 412.2 mAh.g-1。采用交流阻抗图谱和循环伏安对其充放电过程的界面特性进行分析,发现随着充放电的进行,Fe2O3界面形成SEI膜。  相似文献   

12.
碳气凝胶活化对于电极嵌锂性能的影响   总被引:1,自引:0,他引:1  
碳气凝胶由于其对于可充电锂离子电池的高能嵌锂特性, 近年来受关注程度逐渐增加. 碳气凝胶以间苯二酚-甲醛在碳酸钠催化下, 通过溶胶-凝胶工艺、常压干燥技术、碳化、活化后制得. 经CO2气体活化后的碳气凝胶结合了无定型和纳米多孔结构的优点, 在材料原有基础上丰富了多孔结构, 增加了嵌锂点位. 其中, 微孔提供了高比表面积和孔体积以容纳锂及其化合物; 介孔则提供了锂离子大量传输的通道, 从而使得电极具有更高的离子电导率. 这些微结构的优化使材料获得了更高的嵌锂比容量. 此外, 活化碳气凝胶显示了2032 m2·g-1的比表面积. X射线衍射(XRD)和扫描电子显微镜(SEM)的测试结果分别表明了其无定型特质以及纳米颗粒的网络状骨架. 该材料在首次和第50次恒流充放电(50 mA·g-1)循环的嵌锂容量分别为3870和352 mAh·g-1, 对应的可逆容量分别为658 和333 mAh·g-1. 表明了CO2活化对于改善碳气凝胶嵌锂性能的可行性, 且对于其它多孔电极材料的制备及特性优化提供了一种途径.  相似文献   

13.
本文以LiOH·H2O,NH4VO3,NH4H2PO4和柠檬酸等为原料采用流变相法成功地合成了磷酸钒锂化合物。利用XRD,TEM等手段对目标产物的结构和形貌进行了表征,结果表明:在800℃煅烧的样品具有单一纯相的单斜晶体结构。晶体颗粒分布在200~500nm范围,而且在颗粒表面包覆了一层碳,有利于材料的导电率的改善。对该材料的电化学性质进行了测试,实验发现:800℃煅烧的样品在0.1C和1C倍率电流条件下,首次放电比容量分别高达122.8和107mAh·g-1,经过30次循环后容量衰减很少。交流阻抗谱证实了800℃煅烧的样品具有较高的电导率。本文对800℃煅烧的样品具有较好电化学性能的原因进行了初步讨论。  相似文献   

14.
Double carbon coated Fe P composite(Fe P@NC@r GO)was in situ fabricated via the phosphorization process of the as-prepared Prussian blue@graphene oxide(PB@GO)precursor.The Fe P nanocrystals were successfully embedded in the nitrogen-doped porous carbon matrix.When used as the anode for lithium ion batteries(LIBs),the Fe P@NC@r GO anode shows superior lithium storage properties,delivering a high specific capacity of 830 m A h g~(-1)after 100 cycles at 100 m A g~(-1)and excellent rate capability of 359 m A h g~(-1)at 5 A g~(-1).The outstanding performance mainly ascribes to the synergistic effect of the double carbon coating and porous structure design.The introduction of porous carbon and graphene coating on Fe P nanoparticles greatly enhance the electronic conductivity of the active material and well accommodates the large volume variation of Fe P during the cycling process.  相似文献   

15.
<正>A novel ferrite composite using rice husk as substrate has been prepared via high temperature treatment under nitrogen atmosphere.The rice husk substrate consists of porous activated carbon and silica,where spinel ferrite particles with average diameter of 59 nm are distributed.The surface area of the composite is greater than 170 m~2 g~(-1) and the bulk density is less than 0.6 g cm~(-3).Inert atmosphere is indispensable for the synthesis of pure ferrite composites,while different preparation temperatures of above 600℃result in composites with similar structures and morphologies.Due to the presence of ferrite particles,this novel composite shows enhanced adsorption ability for acid orangeⅡ.  相似文献   

16.
近年来,以生物质为前驱体来制备碳材料因其资源丰富、廉价易得、无污染且可再生等优点而引起人们的广泛关注。本文将生物质明胶制备成呈蜂巢状的多孔结构,并以此为前驱体经碳化、活化制备活性炭。研究表明,与商品化明胶相比,由多孔明胶所制备的活性炭其比表面积(可高达3692 m~2?g1)及超级电容器性能均有明显提升。在6 mol?L~(-1) KOH水溶液中,由多孔明胶经600°C碳化、700°C KOH活化所制备的活性炭,在1 A?g~(-1)的放电容量为357 F?g~(-1),即使在100 A?g~(-1)的大电流密度下,其比电容仍可维持在227 F?g~(-1)。活性炭样品也表现出优异的循环稳定性,在10 A?g~(-1)下经7500圈循环稳定性测试后,其初始容量保持率高达93.0%。而且,以该活性炭组装的对称型超级电容器,在250、2500及25000 W?kg~(-1)的功率密度下,其能量密度分别为10.3、9.7和8.2 Wh?kg~(-1);在10 A?g~(-1)下经10000次循环后,容量保持率高达97.6%。这些研究结果表明由蜂巢状多孔明胶所制备的活性炭在高性能超级电容器中具有巨大的应用潜力。  相似文献   

17.
共聚聚酰亚胺膜材料的合成及其气体渗透性能研究   总被引:1,自引:0,他引:1  
以2,2′-双(3,4-二羧基苯基)六氟丙烷二酐(6FDA)作为二酐单体,1,3-苯二胺(mPDA)和2,6-二氨基甲苯(2,6-DAT)为二胺单体,采用溶液共缩聚方法合成了一系列新型共聚聚酰亚胺(6FDA-2,6-DAT/mPDA),该类聚合物均能溶于DMF、DMAc、NMP等极性非质子溶剂中,具有较好的成膜性.测试了H2、N2、O2、CH4、CO25种气体在6FDA-2,6-DAT/mPDA共聚聚酰亚胺致密膜中的渗透性能.结果显示,该系列共聚物具有优异的分离性能.在35℃,0.2 MPa下,H2/N2、O2/N2、CO2/CH4的分离性能均接近或突破Robeson上限.  相似文献   

18.
2D MXene nanosheets with metallic conductivity and high pseudo-capacitance are promising electrode materials for supercapacitors.Especially,MXene films can be directly used as electrodes for flexible supercapacitors.However,they suffer from sluggish ion transport due to self-restacking,causing limited electrochemical performance.Herein,a flexible 3D porous MXene film is fabricated by incorporating graphene oxide(GO) into MXene film followed by self-propagating reduction.The self-propagating process is facile and effective,which can be accomplished in 1.25 s and result in 3D porous framework by releasing substantial gas instantaneously.As the 3D porous structure provides massive ion-accessible active sites and promotes fast ion transport,the MXene-rGO films exhibit superior capacitance and rate performance.With the rGO content of 20%,the MXene-rGO-20 film delivers a high capacitance of 329.9 F g-1 at 5 mV s-1 in 3 M H2 SO4 electrolyte and remains 260.1 F g-1 at 1,000 mV s-1 as well as good flexibility.Furthermore,the initial capacitance is retained above 90% after 40,000 cycles at 100 A g-1,revealing good cycle stability.This work not only provides a high-performance flexible electrode for supercapacitors,but also proposes an efficient and time-saving strategy for constructing 3D structure from 2D materials.  相似文献   

19.
《Journal of Energy Chemistry》2017,26(6):1252-1259
A flexible electrode of nickel diselenide/carbon fiber cloth(NiSe_2/CFC) is fabricated at room temperature by a simple and efficient electrodeposition method. Owing to NiSe_2 character of nanostructure and high conductivity, the as-synthesized electrodes possess perfect pseudocapacitive property with high specific capacitance and excellent rate capability. In three-electrode system, the electrode specific capacitance of the NiSe_2/CFC electrode varies from 1058 F g~(-1) to 996.3 F g~(-1) at 2 A g~(-1) to 10 A g~(-1) respectively, which shows great rate capability. Moreover, the NiSe_2 electrode is assembled with an active carbon(AC) electrode to form an asymmetric supercapacitor with an extended potential window of 1.6 V. The asymmetric supercapacitor possesses an excellent energy density 32.7 Wh kg~(-1) with a power density 800 W kg~(-1) at the current density of 1 A g~(-1). The nanosheet array on carbon fiber cloth with high flexibility, specific capacitance and rate capacitance render the NiSe_2 to be regarded as the promising material for the high performance superconductor.  相似文献   

20.
The Co-incorporated Ce_(1-x)Zr_xO_2 catalysts were prepared by co-precipitation for carbon dioxide reforming of methane. The ratio of Ce to Zr was varied to optimize the performances of co-precipitated Co-Ce-Zr-O_x catalysts. The prepared catalysts were characterized by various physico-chemical characterization techniques including TPR, X-ray diffraction, N2 adsorption at low temperature, XPS and CO_2-TPSR. The co-precipitated Co-Ce_(0.8)Zr_(0.2)O_2 sample containing 16% CoO exhibited a higher catalytic activity among the five catalysts, and the activity was maintained without significant loss during the reaction for 60 h. Under the conditions of 750 ℃, 0.1 MPa, 36000 ml/(h·g_(cat)), and CO_2/CH_4 molar ratio of 1 : 1, the CO_2 conversion over this catalyst was 75% while the CH_4 conversion was 67%. The cubic Ce_(0.8)Zr_(0.2)O_2 facilitated a higher dispersion and a higher reducibility of the cobalt component, and the apparent activation energy for Co-Ce_(0.8)Zr_(0.2)O_2 sample was 49.1 kJ/mol in the CO_2/CH_4 reforming reaction. As a result, the Co-Ce_(0.8)Zr_(0.2)O_2 sample exhibited a higher activity and stability for the reforming of CH_4 with CO_2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号