首页 | 本学科首页   官方微博 | 高级检索  
     检索      

碳气凝胶活化对于电极嵌锂性能的影响
引用本文:刘念平,沈军,关大勇,刘冬,周小卫,李亚捷.碳气凝胶活化对于电极嵌锂性能的影响[J].物理化学学报,2013,29(5):966-972.
作者姓名:刘念平  沈军  关大勇  刘冬  周小卫  李亚捷
作者单位:Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Institute of Physical Science and Engineering of Tongji University, Shanghai 200092, P. R. China
基金项目:supported by the National Natural Science Foundation of China(51072137,50802064,11074189);Key Projects in the NationalScience&Technology Pillar Program,China(2009BAC62B02);Shanghai Committee of Science and Technology,China(11nm0501600)~~
摘    要:碳气凝胶由于其对于可充电锂离子电池的高能嵌锂特性, 近年来受关注程度逐渐增加. 碳气凝胶以间苯二酚-甲醛在碳酸钠催化下, 通过溶胶-凝胶工艺、常压干燥技术、碳化、活化后制得. 经CO2气体活化后的碳气凝胶结合了无定型和纳米多孔结构的优点, 在材料原有基础上丰富了多孔结构, 增加了嵌锂点位. 其中, 微孔提供了高比表面积和孔体积以容纳锂及其化合物; 介孔则提供了锂离子大量传输的通道, 从而使得电极具有更高的离子电导率. 这些微结构的优化使材料获得了更高的嵌锂比容量. 此外, 活化碳气凝胶显示了2032 m2·g-1的比表面积. X射线衍射(XRD)和扫描电子显微镜(SEM)的测试结果分别表明了其无定型特质以及纳米颗粒的网络状骨架. 该材料在首次和第50次恒流充放电(50 mA·g-1)循环的嵌锂容量分别为3870和352 mAh·g-1, 对应的可逆容量分别为658 和333 mAh·g-1. 表明了CO2活化对于改善碳气凝胶嵌锂性能的可行性, 且对于其它多孔电极材料的制备及特性优化提供了一种途径.

关 键 词:碳气凝胶  溶胶-凝胶  气体活化  无定型碳  锂离子电池  
收稿时间:2012-11-12
修稿时间:2013-02-28

Effect of Carbon Aerogel Activation on Electrode Lithium Insertion Performance
LIU Nian-Ping SHEN Jun,GUAN Da-Yong LIU Dong,ZHOU Xiao-Wei LI Ya-Jie.Effect of Carbon Aerogel Activation on Electrode Lithium Insertion Performance[J].Acta Physico-Chimica Sinica,2013,29(5):966-972.
Authors:LIU Nian-Ping SHEN Jun  GUAN Da-Yong LIU Dong  ZHOU Xiao-Wei LI Ya-Jie
Institution:Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Institute of Physical Science and Engineering of Tongji University, Shanghai 200092, P. R. China
Abstract:Carbon aerogels have received much recent attention as high-capacity insertion anodes for rechargeable lithium ion batteries. Carbon aerogels were synthesized from resorcinol-formaldehyde with a sodium carbonate catalyst via a sol-gel process, ambient drying, carbonization, and activation. Gaseous CO2-activated carbon aerogels combined the advantages of amorphous and nanoporous structures, with richer porous structures and more lithium insertion points than conventional carbon aerogels. Microporosity analysis indicated a high surface area, and the pore volume effectively retained lithium and its compounds. The mesoporosity allowed the mass transport of Li+ and conferred high ionic conductivity to the electrode. These improvements led to a higher lithium insertion capacity, and the activated carbon aerogel exhibited a specific surface area of 2032 m2·g-1. X-ray diffraction (XRD) and scanning electron microscopy (SEM) revealed an amorphous structure and nanoparticle network skeleton, respectively. Lithium insertion capacities of 3870 and 352 mAh·g-1 were exhibited in the 1st and 50th galvanostatic discharge-charge (50 mA·g-1) cycles, respectively. This corresponded to irreversible capacities of 658 and 333 mAh·g-1, respectively. This work demonstrates the feasibility of CO2 activation for improving lithium insertion performance in carbon aerogels, and provides preparation and optimization procedures for other porous electrode materials.
Keywords:Carbon aerogel  Sol-gel  Gas activation  Amorphous carbon  Lithium ion battery
本文献已被 CNKI 等数据库收录!
点击此处可从《物理化学学报》浏览原始摘要信息
点击此处可从《物理化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号