首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
梁长海  刘倩  李闯  陈霄 《分子催化》2013,27(4):316-322
采用化学还原法合成Pd纳米立方体,并将其作为晶种,进一步合成大尺寸的纳米Pd立方体以及具有不同{100}和{111}晶面比例的纳米Pd多面体.将形貌和尺寸可控的纳米Pd溶胶应用于1,4-丁炔二醇催化加氢的反应中,反应结果表明,纳米Pd的催化性能取决于其尺寸和形貌.{111}晶面的催化活性高于{100}晶面,PVP稳定的Pd胶体对1,4-丁烯二醇均具有较高选择性,具有适当{100}和{111}晶面比例的纳米Pd多面体对1,4-丁烯二醇的选择性可达96%.  相似文献   

2.
The shape sensitivity of Pd catalysts in Suzuki–Miyaura coupling reactions is studied using nanocrystals enclosed by well‐defined surface facets. The catalytic performance of Pd nanocrystals with cubic, cuboctahedral and octahedral morphologies are compared. Superior catalytic reactivity is observed for Pd NCs with {100} surface facets compared to {111} facets. The origin of the enhanced reactivity associated with a cubic morphology is related to the leaching susceptibility of the nanocrystals. Molecular oxygen plays a key role in facilitating the leaching of Pd atoms from the surface of the nanocrystals. The interaction of O2 with Pd is itself facet‐dependent, which in turn gives rise to more efficient leaching from {100} facets, compared to {111} facets under the reaction conditions.  相似文献   

3.
Palladium is a key catalyst invaluable to many industrial processes and fine-chemical synthesis. Although recent progress has allowed the synthesis of Pd nanoparticles with various shapes by using different techniques, the facile synthesis of Pd nanocrystals and turning them into a highly active, selective, and stable catalyst systems still remain challenging. Herein, we report the highly selective one-pot synthesis of monodisperse Pd cluster nanowires in aqueous solution; these consist of interconnected nanoparticles and may serve as highly active catalysts because of the enrichment of high index facets on the surface, including {443}, {331}, and {221} steps. For the first time, carbon nanotube and γ-Al(2)O(3) immobilized Pd cluster nanowires showed highly enhanced catalytic performance in the liquid-phase selective hydrogenation of cinnamaldehyde and gas-phase hydrogenation of 1,3butadiene relative to immobilized Pd icosahedra and nanocubes, as well as commercial Pd catalysts.  相似文献   

4.
This article describes a systematic study of the galvanic replacement reaction between PtCl(6)(2-) ions and Pd nanocrystals with different shapes, including cubes, cuboctahedrons, and octahedrons. It was found that Br(-) ions played an important role in initiating, facilitating, and directing the replacement reaction. The presence of Br(-) ions led to the selective initiation of galvanic replacement from the {100} facets of Pd nanocrystals, likely due to the preferential adsorption of Br(-) ions on this crystallographic plane. The site-selective galvanic replacement resulted in the formation of Pd-Pt bimetallic nanocrystals with a concave structure owing to simultaneous dissolution of Pd atoms from the {100} facets and deposition of the resultant Pt atoms on the {111} facets. The Pd-Pt concave nanocubes with different weight percentages of Pt at 3.4, 10.4, 19.9, and 34.4 were also evaluated as electrocatalysts for the oxygen reduction reaction (ORR). Significantly, the sample with a 3.4 wt.% of Pt exhibited the largest specific electrochemical surface area and was found to be four times as active as the commercial Pt/C catalyst for the ORR in terms of equivalent Pt mass.  相似文献   

5.
The synthesis of Pd nanocrystals of controlled size and morphology has drawn enormous interest due to their catalytic activity. We report a new and efficient strategy for the one-step synthesis of monodispersed Pd nanocubes with ethylenediamine tetramethylene phosphonate (EDTMP) as a complex-forming and capping agent. The morphology, structure, and growth mechanism of the Pd nanocubes were fully characterized via selected area electron diffraction (SAED), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). It was found that the morphology of the Pd nanocrystals in the proposed EDTMP–PdCl2 system could be changed from octahedrons to nanocubes simply by adjusting the amount of iodide used during synthesis. After UV/ozone and electrochemical cleaning, the as-prepared Pd nanocubes demonstrated excellent electrocatalytic activity and stability during formic acid oxidation, owing to their abundant {100} facets and small particle size.  相似文献   

6.
We report the highly facet‐dependent catalytic activity of Cu2O nanocubes, octahedra, and rhombic dodecahedra for the multicomponent direct synthesis of 1,2,3‐triazoles from the reaction of alkynes, organic halides, and NaN3. The catalytic activities of clean surfactant‐removed Cu2O nanocrystals with the same total surface area were compared. Rhombic dodecahedral Cu2O nanocrystals bounded by {110} facets were much more catalytically active than Cu2O octahedra exposing {111} facets, whereas Cu2O nanocubes displayed the slowest catalytic activity. The superior catalytic activity of Cu2O rhombic dodecahedra is attributed to the fully exposed surface Cu atoms on the {110} facet. A large series of 1,4‐disubstituted 1,2,3‐triazoles have been synthesized in excellent yields with high regioselectivity under green conditions by using these rhombic dodecahedral Cu2O catalysts, including the synthesis of rufinamide, an antiepileptic drug, demonstrating the potential of these nanocrystals as promising heterogeneous catalysts for other important coupling reactions.  相似文献   

7.
The development of high-performance nanocatalysts relies essentially on the generation of stable and active surface sites at the atomic scale through synthetic control of the size, shape, and chemical composition of nanoscale metals and metal oxides. One promising route is to induce the exposure of catalytically active high-index facets of nanostructures through shape-controlled syntheses. We have designed and prepared two types of Pd nanoshells that are enclosed by high-index {730} and {221} facets through heteroepitaxial growth on high-index-faceted Au nanocrystals. The turnover numbers per surface atom of the high-index-faceted Pd nanoshells have been found to be 3-7 times those of Pd and Au-Pd core-shell nanocubes that possess only {100} facets in catalyzing the Suzuki coupling reaction. These results open up a potential for the development of inexpensive and highly active metal nanocatalysts.  相似文献   

8.
本文基于课题组前期工作,选用适当的金属前驱物、还原剂、稳定剂和保护剂,通过调控氧化刻蚀和反应动力学等,成功合成了形貌和尺寸均不相同的Pd纳米晶.经过认真的纳米粒子清洗和电极修饰组装,考察了它们在电催化甲酸氧化反应中的形貌与性能的关系.研究结果表明,Pd纳米晶样品的最大电流密度以纳米八面体(nanooctahedra)、纳米线(nanowires)、纳米立方体(nanocubes)、纳米瓜子(nanotapers)、凹面纳米立方体(concave nanocubes)的顺序递增,催化甲酸氧化反应的起始氧化电位均小于0.2V.研究结果印证了Pd纳米晶催化甲酸氧化反应的催化性能在尺寸效应上主要受活性表面积的影响,扣除表面积效应后的催化性能与其尺寸没有明确关系.该系列Pd纳米晶的催化性能主要取决于其表面结构,得出Pd纳米晶催化甲酸氧化反应遵循{111}晶面〈{100}晶面〈高指数晶面的性能活性顺序.综合最大电流密度和最小操作电位因素发现,Pd凹面纳米立方体和Pd纳米瓜子具有相对较好的商用价值.  相似文献   

9.
Metallic nanocrystals (NCs) with well‐defined sizes and shapes represent a new family of model systems for establishing structure–function relationships in heterogeneous catalysis. Here in this study, we show that catalyst poisoning can be utilized as an efficient strategy for nanocrystals shape and composition control, as well as a way to tune the catalytic activity of catalysts. Lead species, a well‐known poison for noble‐metal catalysts, was investigated in the growth of Pd NCs. We discovered that Pb atoms can be incorporated into the lattice of Pd NCs and form Pd–Pb alloy NCs with tunable composition and crystal facets. As model catalysts, the alloy NCs with different compositions showed different selectivity in the semihydrogenation of phenylacetylene. Pd–Pb alloy NCs with better selectivity than that of the commercial Lindlar catalyst were discovered. This study exemplified that the poisoning effect in catalysis can be explored as efficient shape‐directing reagents in NC growth, and more importantly, as a strategy to tailor the performance of catalysts with high selectivity.  相似文献   

10.
The semihydrogenation of alkynes into alkenes rather than alkanes is of great importance in the chemical industry. Unfortunately, state‐of‐the‐art heterogeneous catalysts hardly achieve high turnover frequencies (TOFs) simultaneously with almost full conversion, excellent selectivity, and good stability. Here, we used metal–organic frameworks (MOFs) containing Zr metal nodes (“UiO”) with tunable wettability and electron‐withdrawing ability as activity accelerators for the semihydrogenation of alkynes catalyzed by sandwiched palladium nanoparticles (Pd NPs). Impressively, the porous hydrophobic UiO support not only leads to an enrichment of phenylacetylene around the Pd NPs but also renders the Pd surfaces more electron‐deficient, which leads to a remarkable catalysis performance, including an exceptionally high TOF of 13835 h?1, 100 % phenylacetylene conversion 93.1 % selectivity towards styrene, and no activity decay after successive catalytic cycles. The strategy of using molecularly tailored supports is universal for boosting the selective semihydrogenation of various terminal and internal alkynes.  相似文献   

11.
The selective hydrogenation of alkynes to alkenes is a crucial step in the synthesis of fine chemicals. However, the widely utilized palladium (Pd)-based catalysts often suffer from poor selectivity. In this work, we demonstrate a carbonization-reduction method to create palladium carbide subnanometric species within pure silicate MFI zeolite. The carbon species can modify the electronic and steric characteristics of Pd species by forming the predominant Pd−C4 structure and, meanwhile, facilitate the desorption of alkenes by forming the Si−O−C structure with zeolite framework, as validated by the state-of-the-art characterizations and theoretical calculations. The developed catalyst shows superior performance in the selective hydrogenation of alkynes over mild conditions (298 K, 2 bar H2), with 99 % selectivity to styrene at a complete conversion of phenylacetylene. In contrast, the zeolite-encapsulated carbon-free Pd catalyst and the commercial Lindlar catalyst show only 15 % and 14 % selectivity to styrene, respectively, under identical reaction conditions. The zeolite-confined Pd-carbide subnanoclusters promise their superior properties in semihydrogenation of alkynes.  相似文献   

12.
Semihydrogenation of alkynes to alkenes is an important and fundamental reaction in many industrial and synthetic applications and often suffers low selectivity because of the overhydrogenation. Here, highly selective semihydrogenation of alkynes is achieved by using H2 ex situ generated from formic acid dehydrogenation with palladium (Pd)-based bimetallic catalysts through a two-chamber reactor in this work, realizing efficient utilization of H2 and selective production of alkenes under mild reaction conditions. The Pd-based bimetallic catalysts show excellent catalytic performances for semihydrogenation of alkynes (PdZn bimetallic catalyst) and dehydrogenation of formic acid (PdAg bimetallic catalyst) in the two-chamber reactor.  相似文献   

13.
Au–Pd core–shell nanocrystals with tetrahexahedral (THH), cubic, and octahedral shapes and comparable sizes were synthesized. Similar‐sized Au and Pd cubes and octahedra were also prepared. These nanocrystals were used for the hydrogen‐evolution reaction (HER) from ammonia borane. Light irradiation can enhance the reaction rate for all the catalysts. In particular, Au–Pd THH exposing {730} facets showed the highest turnover frequency for hydrogen evolution under light with 3‐fold rate enhancement benefiting from lattice strain, modified surface electronic state, and a broader range of light absorption. Finite‐difference time‐domain (FDTD) simulations show a stronger electric field enhancement on Au–Pd core–shell THH than those on other Pd‐containing nanocrystals. Light‐assisted nitro reduction by ammonia borane on Au–Pd THH was also demonstrated. Au–Pd tetrahexahedra supported on activated carbon can act as a superior recyclable plasmonic photocatalyst for hydrogen evolution.  相似文献   

14.
Titanium dioxide (TiO2) and, in particular, its anatase polymorph, is widely studied for photocatalytic H2 production. In the present work, we examine the importance of reactive facets of anatase crystallites on the photocatalytic H2 evolution from aqueous methanol solutions. For this, we synthesized anatase TiO2 nanocrystals with a large amount of either {001} facets, that is, nanosheets, or {101} facets, that is, octahedral nanocubes, and examined their photocatalytic H2 evolution and then repeated this procedure with samples where Pt co-catalyst is present on all facets. Octahedral nanocubes with abundant {101} facets produce >4 times more H2 than nanosheets enriched in {001} facets if the reaction is carried out under co-catalyst-free conditions. For samples that carry Pt co-catalyst on both {001} and {101} facets, faceting loses entirely its significance. This demonstrates that the beneficial role of faceting, namely the introduction of {101} facets that act as electron transfer mediator is relevant only for co-catalyst-free TiO2 surfaces.  相似文献   

15.
肖翅  田娜  周志有  孙世刚 《电化学》2020,26(1):61-72
催化剂的性能与其表面结构及组成密切相关,高指数晶面纳米晶的表面含有高密度的台阶原子等活性位点而表现出较高的催化活性. 本文综述了电化学方波电位方法用于Pt、Pd、Rh等贵金属高指数晶面结构纳米晶催化剂的制备、形成机理及其电催化性能的研究. 针对贵金属利用率问题,还着重介绍了具有较高质量活性的小粒径Pt二十四面体的制备. 在此基础上,还介绍了电化学方波电位方法用于低共熔溶剂中制备高指数晶面纳米晶,以及高指数晶面纳米催化剂的表面修饰及应用;最后对高指数晶面纳米催化剂的发展做出了展望.  相似文献   

16.
Concave trisoctahedral (TOH) Pd@Au core-shell nanocrystals bound by {331} facets have been synthesized for the first time. Pd nanocubes and cetyltrimethylammonium chloride were used as the structure-directing cores and capping agents, respectively. Their optical and electrocatalytic properties were investigated.  相似文献   

17.
This article presents a quantitative analysis of the role played by poly(vinylpyrrolidone) (PVP) in seed-mediated growth of Ag nanocrystals. Starting from Ag nanocubes encased by {100} facets as the seeds, the resultant nanocrystals could take different shapes depending on the concentration of PVP in the solution. If the concentration was above a critical value, the seeds simply grew into larger cubes still enclosed by {100} facets. When the concentration fell below a critical value, the seeds would evolve into cuboctahedrons enclosed by a mix of {100} and {111} facets and eventually octahedrons completely covered by {111} facets. We derived the coverage density of PVP on Ag(100) surface by combining the results from two measurements: (i) cubic seeds were followed to grow at a fixed initial concentration of PVP to find out when {111} facets started to appear on the surface, and (ii) cubic seeds were allowed to grow at reduced initial concentrations of PVP to see at which concentration {111} facets started to appear from the very beginning. We could calculate the coverage density of PVP from the differences in PVP concentration and the total surface area of Ag nanocubes between these two samples. The coverage density was found to be 140 and 30 repeating units per nm(2) for PVP of 55,000 and 10,000 g/mol in molecular weight, respectively, for cubic seeds of 40 nm in edge length. These values dropped slightly to 100 and 20 repeating units per nm(2), respectively, when 100 nm Ag cubes were used as the seeds.  相似文献   

18.
The semihydrogenation of alkynes into alkenes rather than alkanes is of great importance in the chemical industry. Unfortunately, state-of-the-art heterogeneous catalysts hardly achieve high turnover frequencies (TOFs) simultaneously with almost full conversion, excellent selectivity, and good stability. Here, we used metal–organic frameworks (MOFs) containing Zr metal nodes (“UiO”) with tunable wettability and electron-withdrawing ability as activity accelerators for the semihydrogenation of alkynes catalyzed by sandwiched palladium nanoparticles (Pd NPs). Impressively, the porous hydrophobic UiO support not only leads to an enrichment of phenylacetylene around the Pd NPs but also renders the Pd surfaces more electron-deficient, which leads to a remarkable catalysis performance, including an exceptionally high TOF of 13835 h−1, 100 % phenylacetylene conversion 93.1 % selectivity towards styrene, and no activity decay after successive catalytic cycles. The strategy of using molecularly tailored supports is universal for boosting the selective semihydrogenation of various terminal and internal alkynes.  相似文献   

19.
Direct alcohol fuel cells (DAFCs) have attracted considerable research interest because of their potential application as alternative power sources for automotive systems and portable electronics. Pd-based catalysts represent one of the most popular catalysts for DAFCs due to their excellent electrocatalytic activities in alkaline electrolytes. Thus, it is of great importance to understand the structure-activity relationship of Pd electrocatalysts for alcohol electrocatalysis. Recently, size- and shape- controlled Pd nanocrystals have been successfully synthesized and subsequently used to study the size and shape effects of Pd electrocatalysts on alcohol electrocatalysis, in which the Pd (100) facet exhibited higher electrocatalytic oxidation activity for small alcohol molecules than the Pd (111) and (110) facets. Although it is well known that capping ligands, which are widely used in wet chemistry for the size- and shape-controlled synthesis of metal nanocrystals, likely chemisorb onto the surfaces of the resulting metal nanocrystals and influence their surface structure and surface-mediated properties, such as catalysis, this issue was not considered in previous studies of Pd nanocrystal electrocatalysts for electrocatalytic oxidation of small alcohol molecules. In this study, we prepared polyvinylpyrrolidone (PVP)-capped Pd nanocrystals with different morphologies and sizes and comparatively studied their electrocatalytic activities for methanol and ethanol oxidation in alkaline solutions. The chemisorbed PVP molecules transferred charge to the Pd nanocrystals, and the finer Pd nanocrystals had a higher coverage of chemisorbed PVP, and thus exposed fewer accessible surface sites, experienced more extensive PVP-to-Pd charge transfer, and were more negatively charged. The intrinsic electrocatalytic activity, represented by the electrochemical surface area (ECSA)-normalized electrocatalytic activity, of Pd nanocubes with exposed (100) facets increases with the particle size, indicating that the more negatively-charged Pd surface is less electrocatalytically active. The Pd nanocubes with average sizes between 12 and 19 nm are intrinsically more electrocatalytically active than commercial Pd black electrocatalysts, while the activity of Pd nanocubes with an averages size of 8 nm is less. This suggests that the enhancement effect of the exposed (100) facets surpasses the deteriorative effect of the negatively charged Pd surface for the Pd nanocubes with average sizes between 12 and 19 nm, whereas the deteriorative effect of the negatively charged Pd surface surpasses the enhancement effect of the exposed (100) facets for the Pd nanocubes with average sizes of 8 nm due to the extensive PVP-to-Pd charge transfer. Moreover, the Pd nanocubes with average sizes of 8 nm exhibit similar intrinsic electrocatalytic activity to the Pd nanooctahedra with (111) facets exposed and average sizes of 7 nm, indicating that the electronic structure of Pd electrocatalysts plays a more important role in influencing the electrocatalytic activity than the exposed facet. Since the chemisorbed PVP molecules block the surface sites on Pd nanocrystals that are accessible to the reactants, all Pd nanocrystals exhibit lower mass-normalized electrocatalytic activity than the Pd black electrocatalysts, and the mass-normalized electrocatalytic activity increases with the ECSA. These results clearly demonstrate that the size- and shape-dependent electrocatalytic activity of Pd nanocrystals capped with PVP for methanol and ethanol oxidation should be attributed to both the exposed facets of the Pd nanocrystals and the size-dependent electronic structures of the Pd nanocrystals resulting from the size-dependent PVP coverage and PVP-to-Pd charge transfer. Therefore, capping ligands on capped metal nanocrystals inevitably influence their surface structures and surface-mediated properties, which must be considered for a comprehensive understanding of the structure-activity relationship of capped metal nanocrystals.  相似文献   

20.
Facetted nickel ferrite (NiFe2O4) and bunsenite [(Ni,Fe)O] nanocrystals were grown from the decomposition of iron and nickel nitrate precursors using an inductively coupled plasma reactor. The full range of the two-phase region of the Fe2O3–NiO pseudo-equilibrium phase diagram was investigated by producing nanopowders with bulk Ni/(Ni + Fe) ratios of 0.33, 0.4, 0.5, 0.75 and 1.0. A Ni-poor [Ni/(Ni + Fe) ≤ 0.5] precursor solution produced truncated octahedron nanocrystals, whereas nanocubes were obtained at higher ratios [Ni/(Ni + Fe) ≈ 1]. In both cases, it is shown that the nanocrystals adopt a morphology close to the Wulff shape of the crystalline system (spinel and NaCl, respectively). As the bulk Ni/(Ni + Fe) ratio increases from 0.33 (the stoechiometric composition of nickel ferrite), bunsenite is epitaxially segregated on the {110} and {111} facets of nickel ferrite, while leaving the NiFe2O4 {100} facets exposed. A precursor solution at a Ni/(Ni + Fe) ratio of 0.75 gave an (Ni,Fe)O-rich nanopowder with a random and irregular interconnected morphology. The structure of these nanocrystals can be understood in terms of their thermal history in the plasma reactor. These results highlights the possibility of producing organized multi-phased nanomaterials of binary systems having two phases stable at high temperatures, using a method known to be easily scalable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号