首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
用四川冕宁天然氟碳铈矿晶体为原料 ,研究其热分解过程。测定了粉状氟碳铈矿空气气氛下热分解过程的热重 差热曲线。根据Criado提出的反应动力学机制模型 ,采用热分析技术对动力学数据进行了处理和计算 ,绘制了氟碳铈矿粉末热分解反应的动力学曲线 ,与标准曲线比较 ,结合前期工作动力学参数计算的结果 ,确定了热分解过程的反应机制为形核和生长 ,其反应动力学模型的微分和积分形式的表达式分别为 :f(α) =( 1 -α)和g(α) =-ln( 1 -α)。  相似文献   

2.
β 环糊精(简称β CD)具有亲水的外围及疏水的内腔,在溶液中可与许多有机物形成包合物[1,2]。有关物质的量比为1∶1的包合物的热分解研究已有报道[3-5],但研究不同物质的量比包合物的热分解反应却未见报道。本文用非等温热重法比较了β CD与胆固醇、癸二酸和香兰素的包合物热分解反应动力学,得到其热分解表观活化能。1 实验部分1 1 仪器与试剂岛津DT-40热分析系统;β 环糊精(化学纯,上海化学试剂公司)经水重结晶2次;癸二酸(汕头市光华化学厂)与香兰素、胆固醇(上海化学试剂站分装厂)均为分析纯试剂。1 2 包合物的制备及TG分…  相似文献   

3.
采用疏水性1-丁基-3-甲基咪唑六氟磷酸盐([BMIM]PF6)和亲水性1-丁基-3-甲基咪唑四氟硼酸盐 ([BMIM]BF4)两种咪唑类离子液体(IL)增塑聚丁内酰胺(PBL), 探讨了IL对PBL结晶性能及热性能的影响. 研究发现, 两种IL都会削弱PBL分子间氢键, 并抑制PBL晶体在(200)晶面的生长, 降低PBL结晶度. 当IL添加质量分数为5%时, 增塑膜熔点下降7~8 ℃. 与纯PBL膜相比, [BMIM]BF4增塑PBL膜热稳定性下降, 而[BMIM]PF6增塑PBL膜的热稳定性提高. [BMIM]PF6增塑PBL膜热分解过程的热动力学分析结果表明, 其热分解反应活化能为46.68 kJ/mol, 反应级数为1, 热分解最概然机理函数模型符合Mampel单行法则(一级), 即PBL受到热刺激后, 在聚合物和分解产物界面无规律成核, 反应核心具备反应活性, 随后反应逐步扩大, 直至结束.  相似文献   

4.
草酸锰分解过程的机理函数判别和动力学研究   总被引:6,自引:1,他引:6  
用等温热重和线性升温热重分析法研究了草酸锰热分解过程,提出了判断其机理函数的3步判别法。经实验和理论分析证明,该反应受随机成核和晶核随后生长的过程(A_3a机理)支配,其活化能E=103.95 kJ/mol,频率因子A=4.448×10~8min~(-1).动力学补偿效应为IgA=0.09661E-1.2856  相似文献   

5.
张大海  宿素玲  任宁 《应用化学》2010,27(11):1339-1343
采用水溶液合成法,合成了新型配合物[Dy(p-MBA)3phen]2(p-MBA=对甲基苯甲酸;phen=1,10-邻菲啰啉)。 通过元素分析、红外光谱、摩尔电导和热分析(TG-DTG)等测试技术对配合物进行了表征。 研究了Dy(Ⅲ)配合物在静态空气气氛下的第一步热分解反应的非等温动力学。 通过用Popescu法和非线性等转化率积分法(NL-INT)的处理和计算,得到此步热分解反应的动力学方程为:dα/dT=(15.55×1012)/β·exp(-19825.60/T)3(1-α)2/3,平均活化能为164.83 kJ/mol,指前因子为15.55×1012 min-1。  相似文献   

6.
三唑含能离子盐的热化学性质和热动力学行为   总被引:1,自引:0,他引:1  
用微量热技术测量1,2,4-三唑硝酸盐(1a)、1,2,3-三唑硝酸盐(1b)、3,4,5-三氨基-1,2,4-三唑硝酸盐(2a)、3,4,5-三氨基-1,2,4-三唑二硝酰胺盐(2b)4种三唑类含能离子盐的溶解过程热效应、比热容(283KT353K)及非等温条件下的热分解过程.用处理实验数据和理论计算方法获得了1a、1b、2a、2b溶解过程的热化学方程式、微分溶解焓、摩尔溶解焓、动力学方程式、活化能、指前因子、283~353K温区内比热容随温度变化的线性关系式、标准摩尔热容CpΘ,m和285~353K温区以298.15K为基准的焓、熵和Gibbs自由能函数值.计算了热分解反应的动力学参数、热力学参数以及评估了1a、1b、2a、2b对热的抵抗能力.得到了化合物性质与分子结构之间内在关系的信息.  相似文献   

7.
离子交换法从钾长石提钾   总被引:26,自引:0,他引:26  
我国非水溶性含钾岩石储量丰富 ,其中钾长石矿总量达百亿吨[1 ] 。国内开展钾长石提钾的研究工作由来已久 ,对机理方面的研究较少。郭峰等[2 ] 对炭还原高炉冶炼钾长石进行过热力学分析和动力学研究 ;邱龙会等[3,4] 对钾长石体系热分解进行了热力学分析与计算 ,并对钾长石 石膏 碳酸钙体系加入硫酸钠时的热分解反应动力学进行了实验研究。本文研究了温度、添加剂对钾长石中钾离子交换度的影响 ,对原矿焙烧前后及与添加剂共焙烧后的水不溶物进行了物相分析 ,实验结果与理论推测皆表明 ,添加剂与钾长石共烧结提钾机理为离子交换反应 ,并得出…  相似文献   

8.
用磷钼酸与咪唑合成了一种新的杂多酸-有机电荷转移盐(C3H5N2H)3[PMo12O40]。通过元素分析、红外光谱、固体漫反射光谱、电子自旋共振及热分析等测试技术对其进行了表征,用单扫描法(Achar法和Coats-Redfern法)对合成化合物的TG分析结果进行了非等温热分解动力学研究。推断结果表明,合成化合物的第1步热分解为球对称的三维扩散机理(n=2),其动力学方程为dα/dt=1.58×108[1-(1-α)1/3]-1(1-α)2/3exp(-40931.0/T),求得分解反应的表观活化能E=340.30kJ/mol,指前因子A=1.05×108s-1。标题化合物对紫外光具有光致变色性质,用固体漫反射光谱研究了其光致变色反应动力学。结果显示,其光致变色反应表现为一级或准一级动力学,速率常数k=9.80×10-5s-1。  相似文献   

9.
基于热重分析、微商热重分析及示差热分析研究了N,N′-二苯胺基己二酰胺β-晶型成核剂在空气气氛中的热分解动力学;通过利用Friedman方程和Flynn-Wall-Ozawa(FWO)方程对其热分解过程进行动力学分析求得了其热分解表观活化能;同时利用Achar-Brindly-Sharp方程和Coats-Redfern方程研究了其热分解机理,用等温热重分析法测得了失重10%时的寿命方程.结果表明,N,N′-二苯胺基己二酰胺β-晶型成核剂的表观活化能为138.66kJ.mol-1,其热分解反应的机理函数符合Mample法则,反应级数n=3/2,动力学方程为G(α)=α3/2,寿命方程为:lnτ=-51.877+2.922 2×104/T.  相似文献   

10.
用磷钼酸与咪唑合成一种新的杂多酸-有机电荷转移盐(C3H5N2)3[PMo12O40]。通过元素分析、红外光谱、固体漫反射光谱、电子自旋共振及热分析等测试技术对其进行了表征,用单扫描法(Achar法和Coats-Redfern法)对合成化合物的TG分析结果进行了非等温热分解动力学研究。推断结果表明,合成化合物的第1步热分解为球对称的三维扩散机理(n=2),其动力学方程为dα/dt=1.58×108[1-(1-α)1/3]-1(1-α)2/3exp(-40 931.0/T),求得分解反应的表观活化能E=340.30 kJ/mol,指前因子A=1.05×108 s-1。 标题化合物对紫外光具有光致变色性质,用固体漫反射光谱研究了其光致变色反应动力学。 结果显示,其光致变色反应表现为一级或准一级动力学,速率常数k=9.80×10-5 s-1。  相似文献   

11.
罗阳  陈沛  赵凤起  胡荣祖  李上文  高茵 《中国化学》2004,22(11):1219-1224
Introduction 3,3-Bis(azidomethyl)oxetane/tetrahydrofuran (BAM- O/THF, marked as B/T) copolymer can be used as an azide binder of high energy propellants with the lower signature, and lower sensitivity to improve the me-chanical properties at lower temperature and the burning rate characteristics. Its decomposition kinetics and the effects of THF on the decomposition kinetics of BAMO copolymers have been reported.1,2 In the present work, we report the kinetic model function and kinetic pa…  相似文献   

12.
A novel energetic combustion catalyst, 1,8-dihydroxy-4,5-dinitroanthraquinone manganese salt (DHDNEMn), was synthesized by virtue of the metathesis reaction in a yield of 91%, and its structure was characterized by IR, element analysis and differential scanning calorimetry(DSC). The thermal decomposition reaction kinetics was studied by means of different heating rate DSC. The results show that the apparent activation energy and pre-exponential factor of the exothermic decomposition reaction of DHDNEMn obtained by Kissinger's method are 162.3 kJ/mol and 1011.8 s^-1, respectively. The kinetic equation of major exothermic decomposition reaction of DHDNEMn is dα/dT= 10^118/β 2/5(1-α)[-ln(1-α)[-ln(1-α)]^3/5 exp(-1.623×10^5/RT). The entropy of activation(△S^≠), enthalpy of activation(△H^≠) and free energy of activation(A△G^≠) of the first thermal decomposition are -24.49 J·mol^-1·K^-1, 185.20 kJ/mol and 199.29 kJ/mol(T=575.5 K), respectively. The self-accelerating decomposition temperature(TSADT) and critical temperature of thermal explosion(Tb) are 562.9 and 580.0 K, respectively. The above-mentioned information on the thermal behavior is quite useful for analyzing and evaluating the stability and thermal safety of DHDNEMn.  相似文献   

13.
The thermal behavior and non-isothermal decomposition kinetics of 1-amino-1-hydrazino-2,2-dinitro- ethylene potassium salt[K(AHDNE)] were studied under the non-isothermal conditions by different scanning calorimeter(DSC) method. The thermal behavior of K(AHDNE) presents three exothermic decomposition processes. The kinetic equation of the first thermal decomposition reaction obtained is dα/dT=(1019.63/β)3(1-α)[-ln(1-α)]2/3exp(-1.862× 105/RT). The self-accelerating decomposition temperature(TSADT) and critical temperature of thermal explosion(Tb) of K(AHDNE) are 162.5 and 171.4 ℃, respectively. K(AHDNE) has higher thermal stability than AHDNE.  相似文献   

14.
The potential of the thermal decomposition of cyanogen azide (NCN3) as a high-temperature cyanonitrene (NCN) source has been investigated in shock tube experiments. Electronic ground-state NCN(3Σ) radicals have been detected by narrow-bandwidth laser absorption at overlapping transitions belonging to the Q1 branch of the vibronic 3Σ+?3Π subband of the vibrationally hot 3Πu(010)?3Σg?(010) system at = 30383.11 cm(-1) (329.1302 nm). High-temperature absorption cross sections σ have been directly measured at total pressures of 0.2?2.5 bar, log[σ/(cm2 mol(-1))] = 8.9?8.3 × 10(-4) × T/K (±25%, 750 < T < 2250 K). At these high temperatures, NCN(3Σ) formation is limited by a slow electronic relaxation of the initially formed excited NCN(1Δ) radical rather than thermal decomposition of NCN3. Measured temperature-dependent collision-induced intersystem crossing (CIISC) rate constants are best represented by kCIISC/(cm3 mol(-1) s(-1)) = (1.3 ± 0.5) × 1011 exp[?(21 ± 4) kJ/mol/RT] (740 < T < 1260 K). Nevertheless, stable NCN concentration plateaus have been observed, showing that NCN3 is an ideal precursor for NCN kinetic experiments behind shock waves.  相似文献   

15.
利用两步合成法,得到标题化合物3,6-双(1-氢-1,2,3,4-四唑-5-氨基)-1,2,4,5-四嗪(BTATz)银盐(Ag2(BTATz)·2H2O),并用元素分析、X荧光和红外光谱分析对其进行了结构表征。 采用DSC和TG-DTG技术对化合物进行热分解行为及非等温热分解动力学研究。 结果表明,其热分解过程是由1个吸热阶段和2个放热阶段组成,主放热阶段的非等温热分解反应动力学方程为:dα/dt=1014.29×{3(1-α)[-ln(1-α)]1/4/4}exp(-2.10×104/T)。 计算得到化合物的自加速分解温度(TSADT)、热爆炸临界温度(Tb)、热点火温度(TTIT)和绝热至爆时间(tTIAD)分别为517.10 K、580.12 K、531.00 K和90.32 s ,以此来评价其热安全性。  相似文献   

16.
Dimethyl ether oxidation at elevated temperatures (295-600 K)   总被引:1,自引:0,他引:1  
Dimethyl ether (DME) has been proposed for use as an alternative fuel or additive in diesel engines and as a potential fuel in solid oxide fuel cells. The oxidation chemistry of DME is a key element in understanding its role in these applications. The reaction between methoxymethyl radicals and O(2) has been examined over the temperature range 295-600 K and at pressures of 20-200 Torr. This reaction has two product pathways. The first produces methoxymethyl peroxy radicals, while the second produces OH radicals and formaldehyde molecules. Real-time kinetic measurements are made by transient infrared spectroscopy to monitor the yield of three main products-formaldehyde, methyl formate, and formic acid-to determine the branching ratio for the CH(3)OCH(2) + O(2) reaction pathways. The temperature and pressure dependence of this reaction is described by a Lindemann and Arrhenius mechanism. The branching ratio is described by f = 1/(1 + A(T)[M]), where A(T) = (1.6(+2.4)(-1.0) x 10(-20)) exp((1800 +/- 400)/T) cm(3) molecule(-1). The temperature dependent rate constant of the methoxymethyl peroxy radical self-reaction is calculated from the kinetics of the formaldehyde and methyl formate product yields, k(4) = (3.0 +/- 2.1) x 10(-13) exp((700 +/- 250)/T) cm(3) molecule(-1) s(-1). The experimental and kinetics modeling results support a strong preference for the thermal decomposition of alkoxy radicals versus their reaction with O(2) under our laboratory conditions. These characteristics of DME oxidation with respect to temperature and pressure might provide insight into optimizing solid oxide fuel cell operating conditions with DME in the presence of O(2) to maximize power outputs.  相似文献   

17.
纳米晶镁铝水滑石的制备及其热分解机理   总被引:15,自引:0,他引:15  
研究了无机阻燃剂镁铝水滑石纳米晶的制备及其热分解机理.采用常压下,一步反应的液相法制备镁铝水滑石试样,用XRD和TEM测试试样的相组成和形貌,针状镁铝水滑石纳米晶体的长度约80 nm.依据DSC和DTA-TG测试结果,发现镁铝水滑石纳米晶的热分解由两个阶段组成:第一个吸热峰出现在220 ℃左右,第二个吸热峰出现在380 ℃左右.研究了反应时间对所得镁铝水滑石试样的热分解性能的影响,发现延长反应时间,镁铝水滑石试样的第一次、第二次热分解的起始温度升高,第一次热分解的失重值增大,最后剩余氧化物的量增大,从而增强镁铝水滑石阻燃剂的阻燃性能.根据不同升温速率下获得的DSC测试数据,应用Achar微分法、Šatava-Šesták积分法和Ozawa积分法对镁铝水滑石纳米晶热分解的第二个阶段进行了动力学计算和分析,确定该段的热分解机理函数积分式为(1-α)-1-1.  相似文献   

18.
The reaction kinetics for the thermal decomposition of monomethylhydrazine (MMH) was studied with quantum Rice-Ramsperger-Kassel (QRRK) theory and a master equation analysis for pressure falloff. Thermochemical properties were determined by ab initio and density functional calculations. The entropies, S degrees (298.15 K), and heat capacities, Cp degrees (T) (0 < or = T/K < or = 1500), from vibrational, translational, and external rotational contributions were calculated using statistical mechanics based on the vibrational frequencies and structures obtained from the density functional study. Potential barriers for internal rotations were calculated at the B3LYP/6-311G(d,p) level, and hindered rotational contributions to S degrees (298.15 K) and Cp degrees (T) were calculated by solving the Schr?dinger equation with free rotor wave functions, and the partition coefficients were treated by direct integration over energy levels of the internal rotation potentials. Enthalpies of formation, DeltafH degrees (298.15 K), for the parent MMH (CH3NHNH2) and its corresponding radicals CH3N*NH2, CH3NHN*H, and C*H2NHNH2 were determined to be 21.6, 48.5, 51.1, and 62.8 kcal mol(-1) by use of isodesmic reaction analysis and various ab initio methods. The kinetic analysis of the thermal decomposition, abstraction, and substitution reactions of MMH was performed at the CBS-QB3 level, with those of N-N and C-N bond scissions determined by high level CCSD(T)/6-311++G(3df,2p)//MPWB1K/6-31+G(d,p) calculations. Rate constants of thermally activated MMH to dissociation products were calculated as functions of pressure and temperature. An elementary reaction mechanism based on the calculated rate constants, thermochemical properties, and literature data was developed to model the experimental data on the overall MMH thermal decomposition rate. The reactions of N-N and C-N bond scission were found to be the major reaction paths for the modeling of MMH homogeneous decomposition at atmospheric conditions.  相似文献   

19.
The thermal behavior of thermooxidized poly(vinyl formal) has been investigated by means of thermogravimetry, derivative thermogravimetry, and differential thermal analysis. As a result, it has been clarified (1) that thermal decomposition is composed of three weight loss processes, (2) that, when investigating the ratic of percentage of weight remaining in each process, the behavior differs for each both before and after the thermooxidizing time of 2–4 h; the second weight loss process caused by formation of crosslinking structure prevails in the initial stage of thermooxidation while the first weight loss process caused by decomposition of various types of thermooxidation products such as unsaturated bonds and crosslinking prevails as the thermooxidation proceeds, and (3) that the volume of carbonaceous residue produced as the thermooxidation advances increases about 4 times. When kinetic parameters have been evaluated by applying the Coasts and Redfern method to each weight loss process, on the other hand, it is concluded (1) that each order of reaction is first and (2) that the value of activation energy in the third process of carbonization and burning reaction is substantially lowered as the process of the thermooxidation advances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号