首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel design for a rapid clean‐up method was developed for the analysis of pesticide residues in fruit and vegetables followed by LC–ESI‐MS/MS. The acetonitrile‐based sample extraction technique was used to obtain the extracts, and further clean‐up was carried out by applying the streamlined procedure on a multiplug filtration clean‐up column coupled with a syringe. The sorbent used for clean‐up in this research is multiwalled carbon nanotubes, which was mixed with anhydrous magnesium sulfate to remove water from the extracts. This method was validated on 40 representative pesticides and apple, cabbage, and potato sample matrices spiked at two concentration levels of 10 and 100 μg/kg. It exhibited recoveries between 71 and 117% for most pesticides with RSDs < 15%. Matrix‐matched calibrations were performed with the coefficients of determination >0.995 for most studied pesticides between concentration levels of 10–500 μg/L. The LOQs for 40 pesticides ranged from 2 to 50 μg/kg. The developed method was successfully applied to the determination of pesticide residues in market fruit and vegetable samples.  相似文献   

2.
A multi‐pesticide residue determination method based on a modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) method using multiwalled carbon nanotubes as reversed‐dispersive solid‐phase extraction material was validated in 37 representative pesticides in tobacco. Determination was performed using liquid chromatography with tandem mass spectrometry in multiple reaction monitoring mode. Three major types of tobacco leaf samples, namely, flue‐cured, burley, and oriental tobacco were studied and compared. Three factors (extraction time, external diameter, and amount of extraction material used) that could affect the performance of multi‐walled carbon nanotubes were investigated. Optimization of sample preparation and determination allowed recoveries between 70.8 and 114.8% for all 37 pesticides with < 20.0% relative standard deviations at three spiking levels of 20, 50, and 200 μg/kg. The limits of quantification and limits of detection for the 37 pesticides ranged within 0.46–28.57 and 0.14–8.57 μg/kg at a signal‐to‐noise ratio of 10 and 3, respectively.  相似文献   

3.
A high‐throughput micro‐solid‐phase extraction device based on a 96‐well plate was constructed and applied to the determination of pesticide residues in various apple samples. Butyl methacrylate and ethylene glycol dimethacrylate were copolymerized as a monolithic polymer and placed in the cylindrically shaped stainless‐steel meshes of 96‐micro‐solid‐phase extraction device and used as an extracting unit. Before the micro‐solid‐phase extraction, microwave‐assisted extraction was employed to facilitate the transfer of the pesticide residues from the apple matrix to liquid media. Then, 1 mL of the aquatic samples was transferred into the 96‐well plate and the 96‐micro‐solid‐phase extraction device was applied for the extraction of the selected pesticides. Influential parameters, such as sorbent‐to‐sorbent reproducibility, microwave‐assisted extraction time, ionic strength and micro‐solid‐phase extraction time, were optimized. The limits of quantitation were below 120 μg/kg, which are lower than the maximum residue limits. The developed method was successfully implemented for the extraction and determination of the selected pesticides from 20 different apple samples gathered from local markets. Phosalone was identified and quantified at the concentration level of 147 (±16.4) μg/kg in one of the samples.  相似文献   

4.
建立了一种大豆和玉米中20种农药残留量的分散固相萃取气相色谱-负化学离子源质谱分析方法。样品经乙腈提取并浓缩后加入N-丙基乙二胺(PSA)、石墨化碳黑和C18 3种填料进行分散固相萃取净化,气相色谱-负化学离子源质谱分时段选择离子监测技术测定与确证,外标法定量。所有农药在20~400 μg/L范围内线性均良好;方法的定量限(LOQ)均不高于2 μg/kg;在5,10和20 μg/kg 3个添加水平下所有农药的平均回收率均处于70%~130%之间,相对标准偏差(RSD)低于17%;运用该方法检测大豆和玉米样品时没有干扰现象。  相似文献   

5.
A simple and rapid multiplug filtration cleanup method based on multiwalled carbon nanotubes was developed to determine 124 pesticide residues in rice, wheat, and corn, which could be done in a few seconds without conditioning and elution steps. Various combinations of sorbents were optimized for each matrix with a dispersive solid‐phase extraction procedure to get a satisfactory recovery and clean‐up performance. Good linearity was obtained for all pesticides with calibration curve coefficients larger than 0.9958. Most recoveries for the majority pesticides were between 70 and 120% (n = 5) with relative standard deviations below 20%. The limit of detection was 0.1–1.3 μg/kg, and the limit of quantification was 0.2–4.3 μg/kg for the pesticides in all matrices. The work suggests that the multiplug filtration cleanup method is better than the dispersive solid‐phase extraction method and it could be applied to routinely monitor pesticide residues in market samples.  相似文献   

6.
In this study, an effective speed‐regulated directly suspended droplet microextraction method was developed to condense pesticide residues from teas through dispersive solid‐phase extraction prior to analysis by gas chromatography with tandem mass spectrometry. The extractant was intentionally dispersed into the sample solution in the form of globules through high‐speed agitation. This procedure increases the contact area between the binary phases and shortens the distribution equilibrium time. The fine globules reassembled by decelerating stirring speed, the extractant could be taken out for gas chromatography with tandem mass spectrometry. Recovery studies were performed under optimized extraction conditions by using matrix blanks fortified with pesticides at three concentrations (10, 50, and 100 µg/kg). Over 87% of the recoveries for the analytes in four tea matrices were acceptable given their recovery ranges of 70–120% and relative standard deviations of ≤20%. The limits of quantification of most pesticides were lower than 10 µg/kg and thus satisfied the requirements for maximum residue levels prescribed by the European Community. A total of 38 tea samples from local markets were analyzed by using the proposed method. Results showed that chlorpyrifos was the most frequently detected pesticide in teas. The method is a potential choice for the routine monitoring of pesticide residues in complex matrices.  相似文献   

7.
An analytical method based on dispersive solid‐phase extraction with a multiwalled carbon nanotubes sorbent coupled with positive pulse glow discharge ion mobility spectrometry was developed for analysis of 30 pesticide residues in drinking water samples. Reduced ion mobilities and the mass–mobility correlation of 30 pesticides were measured. The pesticides were divided into five groups to verify the separation capability of pulse glow discharge in mobility spectrometry. The extraction conditions such as desorption solvent, ionic strength, conditions of adsorption and desorption, the amounts of multiwalled carbon nanotubes, and solution pH were optimized. The enrichment factors of pesticides were 5.4‐ to 48.7‐fold (theoretical enrichment factor was 50‐fold). The detection limits of pesticides were 0.01~0.77 μg/kg. The linear range was 0.005–0.2 mg/L for pesticide standard solutions, with determination coefficients from 0.9616 to 0.9999. The method was applied for the analysis of practical and spiked drinking water samples. All results were confirmed by high‐performance liquid chromatography with tandem mass spectrometry. The proposed method was proven to be a commendably rapid screening qualitative and semiquantitative technique for the analysis of pesticide residues in drinking water samples on site.  相似文献   

8.
Detecting pesticide residues in human serum is a challenging process. In this study we developed and validated a method for the extraction and recovery of residues of multiple classes of pesticides from serum using one reagent. Salt‐assisted acetonitrile extraction and high‐performance liquid chromatography with quadrupole time of flight tandem mass spectrometry were used to quantitate 34 pesticides classified in nine groups of chemicals in human serum samples, which are frequently detected in food. The recoveries for 33 of analyzed pesticides ranged from 86 to 112% with relative standard deviations below 15%. The limits of quantitation and linearity of 31 of the pesticides were 1 µg/L and >0.990, respectively. The lower limit of quantitation has been reported in the literature particularly for multi‐classes pesticide mixtures in human serum. The salt–acetonitrile reagent was allowed to achieve good recoveries and detection limits, which could be attributed to salt altering the solvent polarity, preferentially collecting the organic phase in the solution, and promoting the extraction. The developed method was applied for two organophosphate pesticide metabolites, diethylphosphate and 3,5,6‐trichloro‐2‐pyridinol, in serum from rats that were fed a nonlethal quantity of chlorpyrifos. The concentrations of these two were 252.18 ± 15.47 and 0.63 ± 0.23 µg/L, respectively.  相似文献   

9.
建立了一种以壳聚糖为净化材料的QuEChERS-气相色谱-串联质谱检测人参中30种农药残留的检测方法。探究了吸附剂及其用量对样品提取和净化效果的影响,确定壳聚糖为吸附剂净化。采用选择离子监测(SRM)模式,基质匹配标准曲线外标法定量。30种农药在各自的浓度范围内,线性关系良好(r> 0.996);检出限范围为1.5~3.0μg/kg,定量限范围为5.0~10.0μg/kg。3个添加水平(10,20,100μg/kg)的回收率在84.1%~113.7%之间,相对标准偏差均小于15%。该方法适用于检测人参中农药残留。  相似文献   

10.
建立了检测4种坚果(花生、杏仁、腰果、核桃)中38种农药残留的QuEChERS-超高效液相色谱-串联质谱(UPLC-MS/MS)方法.样品均质后,用乙腈进行提取,经PSA和C18净化后,采用Oasis PRiME HLB固相萃取柱进一步净化, UPLC-MS/MS分析.对样品前处理和色谱方法进行了优化.在多重反应监测(MRM)模式下进行质谱分析,外标法定量.38种农药的检出限范围(S/N=3)为0.01~10 μg/kg,定量限(S/N=10)为0.05~20 μg/kg,线性关系良好(r>0.991).4种坚果中农药的平均加标回收率为51.0%~126.0%,相对标准偏差均小于20%.此方法灵敏、准确、有效,可用于坚果类食品中多种农药残留的同时测定.  相似文献   

11.
An automated surface‐sampling technique called liquid extraction surface analysis (LESA), coupled with infusion nano‐electrospray high‐resolution mass spectrometry and tandem mass spectrometry (MS/MS), is described and applied to the qualitative determination of surface chemical residues resulting from the artificial spraying of selected fresh fruits and vegetables with representative pesticides. Each of the targeted pesticides was readily detected with both high‐resolution and full‐scan collision‐induced dissociation (CID) mass spectra. In the case of simazine and sevin, a mass resolution of 100 000 was insufficient to distinguish the isobaric protonated molecules for these compounds. When the surface of a spinach leaf was analyzed by LESA, trace levels of diazinon were readily detected on the spinach purchased directly from a supermarket before they were sprayed with the five‐pesticide mixture. A 30 s rinse under hot running tap water appeared to quantitatively remove all remaining residues of this pesticide. Diazinon was readily detected by LESA analysis on the skin of the artificially sprayed spinach. Finally, incurred pyrimethanil at a level of 169 ppb in a batch slurry of homogenized apples was analyzed by LESA and this pesticide was readily detected by both high‐resolution mass spectrometry and full‐scan CID mass spectrometry, thus showing that pesticides may also be detected in whole fruit homogenized samples. This report shows that representative pesticides on fruit and vegetable surfaces present at levels 20‐fold below generally allowed EPA tolerance levels are readily detected and confirmed by the title technologies making LESA‐MS as interesting screening method for food safety purposes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
A sensitive and efficient solid‐phase microextraction method, based on liquid chromatography and UV–Vis detection, was developed and validated as an alternative method for sample screening prior to LC‐MS analysis. It enables the simultaneous determination of ten pesticides in mango fruits. The fiber used was polydimethylsiloxane while optimum SPME conditions employed have been developed and optimized in a previous work. The desorption process was performed in static mode, using acetonitrile as a solvent. The results indicate that the DI‐SPME/HPLC/UV–Vis procedure resulted in good linear range, accuracy, precision and sensibility and is adequate for analyzing pesticide residues in mango fruits. The limits of detection (0.6–3.3 μg/kg) and quantification (2.0–10.0 μg/kg) were achieved with values lower than the maximum residue levels (MRLs) established by Brazilian legislation for all pesticides in this study. The average recovery rates obtained for each pesticide ranged from 71.6 to 104.3% at three fortification levels, with the relative standard deviation ranging from 4.3 to 18.6%. The proposed method was applied for the determination of the aforementioned compounds in commercial mango samples and residues of azoxystrobin, fenthion, permethrin, abamectin and bifenthrin were detected in the mango samples, although below the MRLs established by Brazilian legislation.  相似文献   

13.
采用分散固相萃取-气相色谱-串联质谱(QuEChERS-GC-MS/MS)建立了蔬菜中107种农药残留量的分析方法。样品由含1%冰醋酸的正己烷饱和乙腈提取、分散固相萃取法净化,采用气相色谱-串联质谱方法在分时段选择反应监测模式下进行测定,外标法定量。所有农药在0.05~1 mg/L范围内线性关系均良好;所有农药的方法定量限(LOQ)均低于10 μg/kg;在10 μg/kg的添加水平下,大蒜、青刀豆、萝卜和菠菜4种基质中绝大多数农药的平均回收率处于60%~130%之间,相对标准偏差(RSD)不大于15.3%。该方法不仅能用于多种蔬菜基质中107种农药残留的检测,而且还能较好地解决本底成分相当复杂的大蒜基质极易出现的干扰问题。  相似文献   

14.
建立了加速溶剂同步萃取净化-气相色谱-串联质谱(GC-MS/MS)同时测定贝类中64种农药残留的方法。加速溶剂萃取的萃取溶剂为90%(v/v)乙腈水溶液,萃取温度为85℃、冲洗体积60%萃取池体积、循环次数1次,同时使用0.8 g N-丙基乙二胺(PSA)和0.8 g石墨化炭黑(GCB)在线净化,提取液浓缩定容后,在多反应监测(MRM)模式下测定,外标法定量。结果表明,64种农药在10.0~1000 μg/L范围内呈现良好的线性关系,决定系数(r2)均大于0.989,方法的定量限为2.0~10.0 μg/kg;对文蛤空白基质进行加标回收试验,添加水平为5.0、10.0和100 μg/kg以及定量限水平,得到的平均回收率为69.4%~129.7%,精密度为0.7%~16.0%(n=6)。该方法提取和净化同步完成,操作简单,重复性好,灵敏度高,能够满足于贝类水产品中多种农药残留的同时筛查。  相似文献   

15.
A fast gas chromatography coupled with mass spectrometry (GC-MS) using large volume injection with programmed temperature vaporizer in solvent vent mode (PTV-LVI-SV) was developed for the trace determination of multiple pesticide residues in traditional Chinese medicines (TCMs). Experimental conditions of PTV-LVI-SV injection were optimized by central composite design. The optimized result was that initial temperature was held at 40°C for 39 s, vent flow rate was set at 45 mL/min and vent pressure was held at 0 psi for 36 s, injection volume was 10 μL. Furthermore, the quick and effective QuEChERS (quick, easy, cheap, effective, rugged and safe) method was performed to extract and purify pesticide residues in TCMs. The prepared samples were analyzed with GC-MS in the selected ion monitoring mode (SIM). The lowest LOD was 4 μg/kg for some pesticides. The recoveries were checked by spiking samples with pesticides at 25, 50 and 250 μg/kg. The average recoveries of most pesticides were from 80 to 118%. The result indicated that QuEChERS and PTV-LVI-SV GC-MS method was a rapid and sensitive analysis technique for the determination of multiple pesticide residues in TCMs.  相似文献   

16.
建立了一种可用于大豆和玉米中12种三唑类杀菌剂残留量测定的分散固相萃取-气相色谱-负化学离子源质谱方法。样品经含1%冰醋酸的乙腈提取,分散固相萃取法净化,采用气相色谱-负化学离子源质谱分时段选择离子监测技术进行测定与确证,外标法定量。12种农药在50~1000 μg/L范围内线性关系均良好;所有农药的方法定量限(LOQ)均低于8 μg/kg;在10,20和40 μg/kg 3个添加水平下所有农药的回收率为70%~130%,相对标准偏差(RSD)≤13.9%。该方法在检测大豆和玉米基质时无干扰现象出现。  相似文献   

17.
In this work, gas chromatography tandem with electron ionization and full‐scan high‐resolution mass spectrometry with a time‐of‐flight mass analyzer was evaluated for analyzing pesticide residues in teas. The relevant aspects for mass spectrometry analysis, including the resolution and mass accuracy, acquisition rate, temperature of ion source, were investigated. Under acquisition condition in 2‐GHz extended dynamic range mode, accurate mass spectral library including 184 gas chromatography detectable pesticides was established and retrieval parameters were optimized. The mass spectra were consistent over a wide concentration range (three orders) with good match values to those of NIST (EI‐quadrupole). The methodology was verified by the validation of 184 pesticides in four tea matrices. A wide linear range (1–1000 μg/kg) was obtained for most compounds in four matrices. Limit of detection, limit of quantification, and limit of identification values acquired in this study could satisfy the requirements for maximum residue levels prescribed by the European Community. Recovery studies were performed at three concentrations (10, 50, and 100 μg/kg). Most of the analytes were recovered at an acceptable range of 70–120% with relative standard deviations ≤ 20% in four matrices. The potential extension of qualitative screening scope makes gas chromatography tandem with electron ionization and mass spectrometry with a time‐of‐flight mass analyzer a more powerful tool compared with gas chromatography with tandem mass spectrometry.  相似文献   

18.
A novel procedure is put forward based on the combination of the well‐established matrix solid‐phase dispersion and the magnetic and sorption properties of magnetic octadecyl in the presence of n‐octanol and was employed in a proof‐of‐concept sample preparation and determination of several classes of pesticide residues in carrots. The procedure does not require the transfer of blend to cartridge and subsequent packing, nor any co‐sorbent for extract clean up. The hydrophobic magnetic nanoparticles utilized as a sorbent, can be retrieved by n‐octanol under the application of a magnetic field due to hydrophobic interactions. Elution of pesticide residues is then carried out with an organic solvent. A total of 26 pesticides were included in this procedure and the target compounds were analyzed using gas chromatography with mass spectrometry in the selective ion monitoring mode. The average extraction recoveries obtained from carrot samples fortified at three different concentrations (20, 50, and 500 μg/kg) were 77–107%. The estimated limits of quantitation for most target analytes were in the low μg/kg level. The study demonstrates that the proposed extraction procedure is simple and effective, avoiding a clean‐up step for the sample preparation of vegetable.  相似文献   

19.
建立了超高效液相色谱串联质谱法(UPLC-MS/MS)检测葡萄籽提取物中78种农药残留物的分析方法。样品用乙腈振荡提取,经乙二胺-N-丙基甲硅烷(PSA)和石墨化炭(GCB)固相萃取柱串联净化,乙腈-甲苯(V/V3:1)洗脱,洗脱液浓缩至约0.5 mL后,于45℃下氮气吹干,1.0 mL乙腈定容,UPLC-MS/MS测定,外标法定量。葡萄籽提取物中,78种农药在0.001~0.2μg/mL范围内线性关系均良好;所有农药的方法定量限(LOQ)均低于17.0μg/kg;在5,25,50μg/kg的添加水平下,葡萄籽提取物中78种农药的平均回收率处于72.6%~113.5%之间,相对标准偏差不大于11%。方法适用于葡萄籽提取物中78种农药残留的快速筛查测定。  相似文献   

20.
In this study, γ‐Fe2O3/chitosan magnetic microspheres were synthesized and evaluated by X‐ray diffraction, SEM, thermogravimetric analysis, and static and kinetic adsorption experiments. Results showed that the magnetic microspheres exhibited good adsorption ability, and offered fast kinetics for the adsorption of trichlorfon, methamidophos, malathion, methyl parathion, dimethoate, omethoate, phosphamidon, phorate, isocarbophos, and chlorpyrifos. Based on magnetic separation, a simple method of magnetic SPE coupled to GC for the simultaneous determination of ten trace organophosphate pesticide residues was developed. Under the optimal conditions, the enrichment factor for ten organophosphorus pesticides was 10.1–364.7 and linear range was 0.001–10.0 mg/L. The LOD (S/N = 3) of the method for the ten pesticides was 0.31–3.59 μg/kg. The RSD for three replicate extractions of spiked samples was between 2.5 and 6.3%. The pear and apple samples spiked with ten organophosphate pesticides at 20 and 200 μg/kg levels were extracted and determined by this method with good recoveries ranging from 79.9 to 98.7%. Moreover, the method has been successfully applied for the determination of the ten organophosphate pesticide residues in peach samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号