首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In this paper we introduce a new smoothing function and show that it is coercive under suitable assumptions. Based on this new function, we propose a smoothing Newton method for solving the second-order cone complementarity problem (SOCCP). The proposed algorithm solves only one linear system of equations and performs only one line search at each iteration. It is shown that any accumulation point of the iteration sequence generated by the proposed algorithm is a solution to the SOCCP. Furthermore, we prove that the generated sequence is bounded if the solution set of the SOCCP is nonempty and bounded. Under the assumption of nonsingularity, we establish the local quadratic convergence of the algorithm without the strict complementarity condition. Numerical results indicate that the proposed algorithm is promising.  相似文献   

2.
《Optimization》2012,61(5):757-773
In this article, we propose a new continuation method for solving the linear complementarity problem (LCP). The method solves one system of linear equations and carries out only a one-line search at each iteration. The continuation method is based on a modified smoothing function. The existence and continuity of a smooth path for solving the LCP with a P 0 matrix are discussed. We investigate the boundedness of the iteration sequence generated by our continuation method under the assumption that the solution set of the LCP is nonempty and bounded. It is shown to converge to an LCP solution globally linearly and locally superlinearly without the assumption of strict complementarity at the solution under suitable assumption. In addition, some numerical results are also reported in this article.  相似文献   

3.
In this work we study an interior penalty method for a finite-dimensional large-scale linear complementarity problem (LCP) arising often from the discretization of stochastic optimal problems in financial engineering. In this approach, we approximate the LCP by a nonlinear algebraic equation containing a penalty term linked to the logarithmic barrier function for constrained optimization problems. We show that the penalty equation has a solution and establish a convergence theory for the approximate solutions. A smooth Newton method is proposed for solving the penalty equation and properties of the Jacobian matrix in the Newton method have been investigated. Numerical experimental results using three non-trivial test examples are presented to demonstrate the rates of convergence, efficiency and usefulness of the method for solving practical problems.  相似文献   

4.
For American option pricing, the Black-Scholes-Merton model can be discretized as a linear complementarity problem (LCP) by using some finite difference schemes. It is well known that the Projected Successive Over Relaxation (PSOR) has been widely applied to solve the resulted LCP. In this paper, we propose a fixed point iterative method to solve this type of LCPs, where the splitting technique of the matrix is used. We show that the proposed method is globally convergent under mild assumptions. The preliminary numerical results are reported, which demonstrate that the proposed method is more accurate than the PSOR for the problems we tested.  相似文献   

5.
Analogous to the nonlinear complementarity problem and the semi-definite complementarity problem, a popular approach to solving the second-order cone complementarity problem (SOCCP) is to reformulate it as an unconstrained minimization of a certain merit function over RnRn. In this paper, we present a descent method for solving the unconstrained minimization reformulation of the SOCCP which is based on the Fischer–Burmeister merit function (FBMF) associated with second-order cone [J.-S. Chen, P. Tseng, An unconstrained smooth minimization reformulation of the second-order cone complementarity problem, Math. Programming 104 (2005) 293–327], and prove its global convergence. Particularly, we compare the numerical performance of the method for the symmetric affine SOCCP generated randomly with the FBMF approach [J.-S. Chen, P. Tseng, An unconstrained smooth minimization reformulation of the second-order cone complementarity problem, Math. Programming 104 (2005) 293–327]. The comparison results indicate that, if a scaling strategy is imposed on the test problem, the descent method proposed is comparable with the merit function approach in the CPU time for solving test problems although the former may require more function evaluations.  相似文献   

6.
This paper deals with the LCP (linear complementarity problem) with a positive semi-definite matrix. Assuming that a strictly positive feasible solution of the LCP is available, we propose ellipsoids each of which contains all the solutions of the LCP. We use such an ellipsoid for computing a lower bound and an upper bound for each coordinate of the solutions of the LCP. We can apply the lower bound to test whether a given variable is positive over the solution set of the LCP. That is, if the lower bound is positive, we know that the variable is positive over the solution set of the LCP; hence, by the complementarity condition, its complement is zero. In this case we can eliminate the variable and its complement from the LCP. We also show how we efficiently combine the ellipsoid method for computing bounds for the solution set with the path-following algorithm proposed by the authors for the LCP. If the LCP has a unique non-degenerate solution, the lower bound and the upper bound for the solution, computed at each iteration of the path-following algorithm, both converge to the solution of the LCP.Supported by Grant-in-Aids for General Scientific Research (63490010) of The Ministry of Education, Science and Culture.Supported by Grant-in-Aids for Young Scientists (63730014) and for General Scientific Research (63490010) of The Ministry of Education, Science and Culture.  相似文献   

7.
In this paper, we present a detailed investigation for the properties of a one-parametric class of SOC complementarity functions, which include the globally Lipschitz continuity, strong semismoothness, and the characterization of their B-subdifferential. Moreover, for the merit functions induced by them for the second-order cone complementarity problem (SOCCP), we provide a condition for each stationary point to be a solution of the SOCCP and establish the boundedness of their level sets, by exploiting Cartesian P-properties. We also propose a semismooth Newton type method based on the reformulation of the nonsmooth system of equations involving the class of SOC complementarity functions. The global and superlinear convergence results are obtained, and among others, the superlinear convergence is established under strict complementarity. Preliminary numerical results are reported for DIMACS second-order cone programs, which confirm the favorable theoretical properties of the method.  相似文献   

8.
In this paper, we present a predictor-corrector smoothing Newton method for solving nonlinear symmetric cone complementarity problems (SCCP) based on the symmetrically perturbed smoothing function. Under a mild assumption, the solution set of the problem concerned is just nonempty, we show that the proposed algorithm is globally and locally quadratic convergent. Also, the algorithm finds a maximally complementary solution to the SCCP. Numerical results for second order cone complementarity problems (SOCCP), a special case of SCCP, show that the proposed algorithm is effective.  相似文献   

9.
本文研究了求解线性互补问题的一类新方法:把线性互补问题转化为多目标优化问题,利用多目标优化有效解的定义,给出了零有效解的概念;进而获得多目标优化问题的零有效解就是线性互补问题的最优解.最后给出了有解、无解线性互补问题,并分别把这些问题转化为多目标优化,采用极大极小方法求解转化后的多目标优化问题.数值实验结果表明了该方法的正确性和有效性,完善了文献[19]的数值结果.  相似文献   

10.
In this paper, we present a new one‐step smoothing Newton method for solving the second‐order cone complementarity problem (SOCCP). Based on a new smoothing function, the SOCCP is approximated by a family of parameterized smooth equations. At each iteration, the proposed algorithm only need to solve one system of linear equations and perform only one Armijo‐type line search. The algorithm is proved to be convergent globally and superlinearly without requiring strict complementarity at the SOCCP solution. Moreover, the algorithm has locally quadratic convergence under mild conditions. Numerical experiments demonstrate the feasibility and efficiency of the new algorithm. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The second-order cone complementarity problem (SOCCP) is an important class of problems containing a lot of optimization problems. The SOCCP can be transformed into a system of nonsmooth equations. To solve this nonsmooth system, smoothing techniques are often used. Fukushima, Luo and Tseng (SIAM J. Optim. 12:436–460, 2001) studied concrete theories and properties of smoothing functions for the SOCCP. Recently, a practical computational method using the smoothed natural residual function to solve the SOCCP was given by Chen, Sun and Sun (Comput. Optim. Appl. 25:39–56, 2003). In the present paper, we propose an algorithm to solve the SOCCP by using the smoothed Fischer-Burmeister function. Some preliminary numerical results are given.  相似文献   

12.
Using the least element solution of the P0 and Z matrix linear complementarity problem (LCP), we define an implicit solution function for linear complementarity constraints (LCC). We show that the sequence of solution functions defined by the unique solution of the regularized LCP is monotonically increasing and converges to the implicit solution function as the regularization parameter goes down to zero. Moreover, each component of the implicit solution function is convex. We find that the solution set of the irreducible P0 and Z matrix LCP can be represented by the least element solution and a Perron?CFrobenius eigenvector. These results are applied to convex reformulation of mathematical programs with P0 and Z matrix LCC. Preliminary numerical results show the effectiveness and the efficiency of the reformulation.  相似文献   

13.
We propose a non-interior continuation algorithm for the solution of the linear complementarity problem (LCP) with a P0 matrix. The proposed algorithm differentiates itself from the current continuation algorithms by combining good global convergence properties with good local convergence properties under unified conditions. Specifically, it is shown that the proposed algorithm is globally convergent under an assumption which may be satisfied even if the solution set of the LCP is unbounded. Moreover, the algorithm is globally linearly and locally superlinearly convergent under a nonsingularity assumption. If the matrix in the LCP is a P* matrix, then the above results can be strengthened to include global linear and local quadratic convergence under a strict complementary condition without the nonsingularity assumption.  相似文献   

14.
In this paper we extend and improve the classical affine scaling interior-point Newton method for solving nonlinear optimization subject to linear inequality constraints in the absence of the strict complementarity assumption. Introducing a computationally efficient technique and employing an identification function for the definition of the new affine scaling matrix, we propose and analyze a new affine scaling interior-point Newton method which improves the Coleman and Li affine sealing matrix in [2] for solving the linear inequlity constrained optimization. Local superlinear and quadratical convergence of the proposed algorithm is established under the strong second order sufficiency condition without assuming strict complementarity of the solution.  相似文献   

15.
In this paper, we consider a linear complementarity problem (LCP) arisen from the Nash and Arrow–Debreu competitive economy equilibria where the LCP coefficient matrix is symmetric. We prove that the decision problem, to decide whether or not there exists a complementary solution, is NP-complete. Under certain conditions, an LCP solution is guaranteed to exist and we present a fully polynomial-time approximation scheme (FPTAS) for approximating a complementary solution, although the LCP solution set can be non-convex or non-connected. Our method is based on approximating a quadratic social utility optimization problem (QP) and showing that a certain KKT point of the QP problem is an LCP solution. Then, we further show that such a KKT point can be approximated with a new improved running time complexity ${{O}((\frac{n^4}{\epsilon})\log\log(\frac{1}{\epsilon}))}$ arithmetic operation in accuracy ${\epsilon \in (0,1)}$ . We also report preliminary computational results which show that the method is highly effective. Applications in competitive market model problems with other utility functions are also presented, including global trading and dynamic spectrum management problems.  相似文献   

16.
Many problems in the areas of scientific computing and engineering applications can lead to the solution of the linear complementarity problem LCP (M,q). It is well known that the matrix multisplitting methods have been found very useful for solving LCP (M,q). In this article, by applying the generalized accelerated overrelaxation (GAOR) and the symmetric successive overrelaxation (SSOR) techniques, we introduce two class of synchronous matrix multisplitting methods to solve LCP (M,q). Convergence results for these two methods are presented when M is an H-matrix (and also an M-matrix). Also the monotone convergence of the new methods is established. Finally, the numerical results show that the introduced methods are effective for solving the large and sparse linear complementary problems.  相似文献   

17.
We propose a noninterior continuation method for the monotone linear complementarity problem (LCP) by modifying the Burke–Xu framework of the noninterior predictor-corrector path-following method (Refs. 1–2). The new method solves one system of linear equations and carries out only one line search at each iteration. It is shown to converge to the LCP solution globally linearly and locally superlinearly without the assumption of strict complementarity at the solution. Our analysis of the continuation method is based on a broader class of the smooth functions introduced by Chen and Mangasarian (Ref. 3).  相似文献   

18.
对称锥互补问题   总被引:1,自引:0,他引:1  
对称锥互补问题是一类均衡优化,包括标准互补问题、二阶锥互补问题和半定互补问题等,近几年,人们借助欧几里德若当代数技术,在对称锥互补问题的研究方面获得了突破性进展并使之逐渐受到重视,本文主要从理论和算法两方面总结和评述这些新成果,同时,列出了相应的重要文献。  相似文献   

19.
My master thesis concerns the solution linear complementarity problems (LCP). The Lemke algorithm, the most commonly used algorithm for solving a LCP until this day, was compared with the piecewise Newton method (PLN algorithm). The piecewise Newton method is an algorithm to solve a piecewise linear system on the basis of damped Newton methods. The linear complementarity problem is formulated as a piecewise linear system for the applicability of the PLN algorithm. Then, different application examples will be presented, solved with the PLN algorithm. As a result of the findings (of my master thesis) it can be assumed that – under the condition of coherent orientation – the PLN-algorithm requires fewer iterations to solve a linear complementarity problem than the Lemke algorithm. The coherent orientation for piecewise linear problems corresponds for linear complementarity problems to the P-matrix-property. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Summary. In this paper we establish two new projection-type methods for the solution of monotone linear complementarity problem (LCP). The methods are a combination of the extragradient method and the Newton method, in which the active set strategy is used and only one linear system of equations with lower dimension is solved at each iteration. It is shown that under the assumption of monotonicity, these two methods are globally and linearly convergent. Furthermore, under a nondegeneracy condition they have a finite termination property. At last, the methods are extended to solving monotone affine variational inequality problem. Received October 10, 2000 / Revised version received May 22, 2001 / Published online October 17, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号