首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we present a new one‐step smoothing Newton method for solving the second‐order cone complementarity problem (SOCCP). Based on a new smoothing function, the SOCCP is approximated by a family of parameterized smooth equations. At each iteration, the proposed algorithm only need to solve one system of linear equations and perform only one Armijo‐type line search. The algorithm is proved to be convergent globally and superlinearly without requiring strict complementarity at the SOCCP solution. Moreover, the algorithm has locally quadratic convergence under mild conditions. Numerical experiments demonstrate the feasibility and efficiency of the new algorithm. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
基于凝聚函数,提出一个求解垂直线性互补问题的光滑Newton法.该算法具有以下优点:(i)每次迭代仅需解一个线性系统和实施一次线性搜索;(ⅱ)算法对垂直分块P0矩阵的线性互补问题有定义且迭代序列的每个聚点都是它的解.而且,对垂直分块P0+R0矩阵的线性互补问题,算法产生的迭代序列有界且其任一聚点都是它的解;(ⅲ)在无严格互补条件下证得算法即具有全局线性收敛性又具有局部二次收敛性.许多已存在的求解此问题的光滑Newton法都不具有性质(ⅲ).  相似文献   

3.
In this paper, we present a predictor-corrector smoothing Newton method for solving nonlinear symmetric cone complementarity problems (SCCP) based on the symmetrically perturbed smoothing function. Under a mild assumption, the solution set of the problem concerned is just nonempty, we show that the proposed algorithm is globally and locally quadratic convergent. Also, the algorithm finds a maximally complementary solution to the SCCP. Numerical results for second order cone complementarity problems (SOCCP), a special case of SCCP, show that the proposed algorithm is effective.  相似文献   

4.
By smoothing a perturbed minimum function, we propose in this paper a new smoothing function. The existence and continuity of a smooth path for solving the nonlinear complementarity problem (NCP) with a P 0 function are discussed. We investigate the boundedness of the iteration sequence generated by noninterior continuation/smoothing methods under the assumption that the solution set of the NCP is nonempty and bounded. Based on the new smoothing function, we present a predictor-corrector smoothing Newton algorithm for solving the NCP with a P 0 function, which is shown to be globally linearly and locally superlinearly convergent under suitable assumptions. Some preliminary computational results are reported.  相似文献   

5.
In this paper, we present a new smoothing Newton method for solving monotone weighted linear complementarity problem (WCP). Our algorithm needs only to solve one linear system of equation and performs one line search per iteration. Any accumulation point of the iteration sequence generated by our algorithm is a solution of WCP. Under suitable conditions, our algorithm has local quadratic convergence rate. Numerical experiments show the feasibility and efficiency of the algorithm.  相似文献   

6.
A new smoothing function is given in this paper by smoothing the symmetric perturbed Fischer-Burmeister function. Based on this new smoothing function, we present a smoothing Newton method for solving the second-order cone optimization (SOCO). The method solves only one linear system of equations and performs only one line search at each iteration. Without requiring strict complementarity assumption at the SOCO solution, the proposed algorithm is shown to be globally and locally quadratically convergent. Numerical results demonstrate that our algorithm is promising and comparable to interior-point methods.  相似文献   

7.
《Optimization》2012,61(5):757-773
In this article, we propose a new continuation method for solving the linear complementarity problem (LCP). The method solves one system of linear equations and carries out only a one-line search at each iteration. The continuation method is based on a modified smoothing function. The existence and continuity of a smooth path for solving the LCP with a P 0 matrix are discussed. We investigate the boundedness of the iteration sequence generated by our continuation method under the assumption that the solution set of the LCP is nonempty and bounded. It is shown to converge to an LCP solution globally linearly and locally superlinearly without the assumption of strict complementarity at the solution under suitable assumption. In addition, some numerical results are also reported in this article.  相似文献   

8.
In this article, we first reformulate the generalized nonlinear complementarity problem (GNCP) over a polyhedral cone as a smoothing system of equations and then suggest a smoothing Broyden-like method for solving it. The proposed algorithm has to solve only one system of nonhomogeneous linear equations, perform only one line search and update only one matrix per iteration. We show that the iteration sequence generated by the proposed algorithm converges globally and superlinearly under suitable conditions. Furthermore, the algorithm has local quadratic convergence under mild assumptions. Some numerical examples are given to illustrate the performance and efficiency of the presented algorithm.  相似文献   

9.
《Optimization》2012,61(9):1935-1955
The second-order cone complementarity problem (denoted by SOCCP) can be effectively solved by smoothing-type algorithms, which in general are designed based on some monotone line search. In this paper, based on a new smoothing function of the Fischer–Burmeister function, we propose a smoothing-type algorithm for solving the SOCCP. The proposed algorithm uses a new nonmonotone line search scheme, which contains the usual monotone line search as a special case. Under suitable assumptions, we show that the proposed algorithm is globally and locally quadratically convergent. Some numerical results are reported which indicate the effectiveness of the proposed algorithm.  相似文献   

10.
In this paper, we propose a new smooth function that possesses a property not satisfied by the existing smooth functions. Based on this smooth function, we discuss the existence and continuity of the smoothing path for solving theP 0 function nonlinear complementarity problem ( NCP). Using the characteristics of the new smooth function, we investigate the boundedness of the iteration sequence generated by the non-interior continuation methods for solving theP 0 function NCP under the assumption that the solution set of the NCP is nonempty and bounded. We show that the assumption that the solution set of the NCP is nonempty and bounded is weaker than those required by a few existing continuation methods for solving the NCP  相似文献   

11.
In this paper, we propose a new smooth function that possesses a property not satisfied by the existing smooth functions. Based on this smooth function, we discuss the existence and continuity of the smoothing path for solving theP 0 function nonlinear complementarity problem ( NCP). Using the characteristics of the new smooth function, we investigate the boundedness of the iteration sequence generated by the non-interior continuation methods for solving theP 0 function NCP under the assumption that the solution set of the NCP is nonempty and bounded. We show that the assumption that the solution set of the NCP is nonempty and bounded is weaker than those required by a few existing continuation methods for solving the NCP  相似文献   

12.
In this paper, we present a new one-step smoothing Newton method proposed for solving the non-linear complementarity problem with P0P0-function based on a new smoothing NCPNCP-function. We adopt a variant merit function. Our algorithm needs only to solve one linear system of equations and perform one line search per iteration. It shows that any accumulation point of the iteration sequence generated by our algorithm is a solution of P0-NCPP0-NCP. Furthermore, under the assumption that the solution set is non-empty and bounded, we can guarantee at least one accumulation point of the generated sequence. Numerical experiments show the feasibility and efficiency of the algorithm.  相似文献   

13.
《Optimization》2012,61(8):965-979
We extend the smoothing function proposed by Huang, Han and Chen [Journal of Optimization Theory and Applications, 117 (2003), pp. 39–68] for the non-linear complementarity problems to the second-order cone programming (SOCP). Based on this smoothing function, a non-interior continuation method is presented for solving the SOCP. The proposed algorithm solves only one linear system of equations and performs only one line search at each iteration. It is shown that our algorithm is globally and locally superlinearly convergent in absence of strict complementarity at the optimal solution. Numerical results indicate the effectiveness of the algorithm.  相似文献   

14.
We propose a new smoothing Newton method for solving the P 0-matrix linear complementarity problem (P 0-LCP) based on CHKS smoothing function. Our algorithm solves only one linear system of equations and performs only one line search per iteration. It is shown to converge to a P 0-LCP solution globally linearly and locally quadratically without the strict complementarity assumption at the solution. To the best of author's knowledge, this is the first one-step smoothing Newton method to possess both global linear and local quadratic convergence. Preliminary numerical results indicate that the proposed algorithm is promising.  相似文献   

15.
16.
In this paper, we consider a new non-interior continuation method for the solution of nonlinear complementarity problem with P 0-function (P 0-NCP). The proposed algorithm is based on a smoothing symmetric perturbed minimum function (SSPM-function), and one only needs to solve one system of linear equations and to perform only one Armijo-type line search at each iteration. The method is proved to possess global and local convergence under weaker conditions. Preliminary numerical results indicate that the algorithm is effective.  相似文献   

17.
In this paper, we consider the second-order cone complementarity problem with P 0-property. By introducing a smoothing parameter into the Fischer-Burmeister function, we present a smoothing Newton method for the second-order cone complementarity problem. The proposed algorithm solves only a linear system of equations and performs only one line search at each iteration. At the same time, the algorithm does not have restrictions on its starting point and has global convergence. Under the assumption of nonsingularity, we establish the locally quadratic convergence of the algorithm without strict complementarity condition. Preliminary numerical results show that the algorithm is promising.  相似文献   

18.
A smoothing inexact Newton method for nonlinear complementarity problems   总被引:1,自引:0,他引:1  
In this article, we propose a new smoothing inexact Newton algorithm for solving nonlinear complementarity problems (NCP) base on the smoothed Fischer-Burmeister function. In each iteration, the corresponding linear system is solved only approximately. The global convergence and local superlinear convergence are established without strict complementarity assumption at the NCP solution. Preliminary numerical results indicate that the method is effective for large-scale NCP.  相似文献   

19.
The complementarity problem is theoretically and practically useful, and has been used to study and formulate various equilibrium problems arising in economics and engineerings. Recently, for solving complementarity problems, various equivalent equation formulations have been proposed and seem attractive. However, such formulations have the difficulty that the equation arising from complementarity problems is typically nonsmooth. In this paper, we propose a new smoothing Newton method for nonsmooth equations. In our method, we use an approximation function that is smooth when the approximation parameter is positive, and which coincides with original nonsmooth function when the parameter takes zero. Then, we apply Newton's method for the equation that is equivalent to the original nonsmooth equation and that includes an approximation parameter as a variable. The proposed method has the advantage that it has only to deal with a smooth function at any iteration and that it never requires a procedure to decrease an approximation parameter. We show that the sequence generated by the proposed method is globally convergent to a solution, and that, under semismooth assumption, its convergence rate is superlinear. Moreover, we apply the method to nonlinear complementarity problems. Numerical results show that the proposed method is practically efficient.  相似文献   

20.
This paper is concerned with numerical methods for solving a semi-infinite programming problem. We reformulate the equations and nonlinear complementarity conditions of the first order optimality condition of the problem into a system of semismooth equations. By using a perturbed Fischer–Burmeister function, we develop a smoothing Newton method for solving this system of semismooth equations. An advantage of the proposed method is that at each iteration, only a system of linear equations is solved. We prove that under standard assumptions, the iterate sequence generated by the smoothing Newton method converges superlinearly/quadratically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号