首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
斜辐照激光等离子体辐射X光子特性   总被引:2,自引:0,他引:2       下载免费PDF全文
 在神光Ⅱ高功率激光装置上,实验研究了激光斜辐照形成的激光等离子体辐射X射线光子的特性及真空喷射热等离子体流的方向。采用针孔X射线相机测量了钕玻璃激光(基频1.053 μm)辐照铝靶形成的激光铝等离子体辐射的X射线光子的空间分布,并针对正入射和入射激光斜辐照情况下测得的X射线光子量及特性进行了分析和比较。结果发现:入射激光斜辐照固体平面靶产生的向真空喷射热等离子体流的方向是垂直靶面(即法线方向);正入射和斜入射激光叠加驱动靶时,一定程度上能改善激光辐照的均匀性,但等离子体源辐射的X射线光子数并未发现显著地增加;当激光斜辐照与靶相互作用时,激光能量被等离子体吸收下降。  相似文献   

2.
主脉冲参数和入射条件变化对等离子体状态的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
用一维非平衡辐射流体力学程序,计算和分析了主脉冲激光斜入射与预脉冲垂直入射耦合作用锗靶介质的等离子体状态和激光增益区。研究表明,主脉冲以40°斜入射与其垂直入射相比,在相同靶面功率密度下,电子、离子温度、等离子体烧蚀深度下降约10%。在相同的靶面总能量下,40°斜入射电子温度下降约15%~20%。采用主激光斜入射时间延迟技术,这种下降差别还会更小,能量吸收效率会更高,激光增益区更大。  相似文献   

3.
研究了飞秒激光诱导单个空气等离子体通道的吸收和辐射特性,给出了等离子体通道吸收系数的解析表达式,并理论推导出了辐射能流率的表达式。与TOPS不透明度数据库查表方法比较,两种方法计算结果符合得很好。分析了吸收和辐射参量对入射激光参量的依赖关系。计算了中心波长800nm,脉宽40fs的飞秒激光空气等离子体通道的吸收和辐射参量的典型数值。结果表明,成单丝情况下等离子体通道的Rosseland吸收系数为0.0270cm-1,辐射能流率为7.87×1010W/m2;窄脉宽长波长的入射激光有利于生成吸收小辐射强的等离子体通道。  相似文献   

4.
等离子体X射线激光介质均匀性测量   总被引:1,自引:1,他引:0  
冯贤平  韩申生 《光学学报》1994,14(4):42-345
通过合理而有效地按排多种探测仪器,观察到等离子体X射线激光介质的空间非均匀现象。在保证入射激光经最佳组合透镜后焦线均匀性前提下,由实验显示等离子体介质的空间不均匀性主要来自靶材质量和调焦精度。此外,入射激光脉宽的大小变化将会引起等离子体整个辐射空间和时间范围的明显变化。  相似文献   

5.
 用一维非平衡辐射流体力学程序,计算和分析了主脉冲激光斜入射与预脉冲垂直入射耦合作用锗靶介质的等离子体状态和激光增益区。研究表明,主脉冲以40°斜入射与其垂直入射相比,在相同靶面功率密度下,电子、离子温度、等离子体烧蚀深度下降约10%。在相同的靶面总能量下,40°斜入射电子温度下降约15%~20%。采用主激光斜入射时间延迟技术,这种下降差别还会更小,能量吸收效率会更高,激光增益区更大。  相似文献   

6.
利用广义非线性薛定谔方程,研究了聚焦激光通过透明介质时,感应等离子体的位置、大小及其同激光参数的关系。计算发现:对于给定衍射长度的激光波包,感应等离子体浓度最大值随入射激光功率的增加而趋于一恒定值,感应等离子体区域的大小随着入射激光波包功率的增加而变长、变粗;对于给定功率的激光波包,感应等离子体浓度随着入射激光波包的衍射长度的增加而减少;对于不同衍射长度的激光波包,随着激光功率的增加,感应等离子体向不同方向发展。计算得到的等离子体的位置和形状的变化同Gord ienko等的实验结果非常吻合。该研究有助于理解感应等离子体在介质中的形成过程,推动其在激光加工中的应用。  相似文献   

7.
马国彬  谭维翰 《光学学报》1995,15(3):05-312
通过数据求解亥姆霍兹波动方程,研究了激光辐射薄膜靶产生的不同厚度、不同标尺长度的薄层等离子体对激光的反射,透射及吸收(逆轫致吸收,共振吸收)率随入射角的变化情况,小角度入射时,短脉冲(~ps量级)激光打靶产生的标尺长度较小的等离子体对激光的吸收率比长脉冲打靶时低,但在大角度入射时,短脉冲打靶时等离子体的吸收率反而比长脉冲打靶时高。  相似文献   

8.
 利用神光Ⅱ第九路2 ns长脉冲激光束作用厚钛固体靶,研究了产生的keV X射线源的辐射区域和总辐射功率的时间行为。结果表明:在长脉冲激光作用厚固体靶时,硬X射线线辐射功率的时间行为以及辐射体积的时间行为与激光脉冲波形一致;长脉冲时,等离子体2维膨胀效应非常显著,keV X射线线辐射的径向辐射区域在激光焦斑尺寸附近达到饱和,导致X射线线辐射功率出现饱和,且keV X射线线辐射的辐射体积正比于焦斑尺寸的3次方。从理论和实验角度研究了在同样入射激光能量下,辐射功率随激光焦斑尺寸的变化关系,发现keV X射线线辐射的饱和辐射功率正比于焦斑尺寸的5/3次方,理论结果与实验结果一致。并讨论了相同基频输出激光能量下,keV X射线辐射总功率随激光波长的变化关系,发现即使考虑了倍频效率的影响,短波长激光仍然有利于keV X射线的发射。  相似文献   

9.
当电子密度远低于入射小功率激光所对应的临界密度时,冷等离子体对激光的吸收特性与高密度热等离子体将有很大的差别。在亚密度冷等离子体中,电子与中性粒子间的碰撞将占主导地位,对应的频率远大于电子-离子碰撞频率,这使得碰撞吸收本质发生了变化。亚密度等离子体的电子密度和碰撞频率均较小,它在单位长度传输路径内对常用的工作在可见光、红外波段内的小功率激光的碰撞吸收可以忽略不计。但是对于非正常吸收机制的影响尚需深入研究。  相似文献   

10.
戴宇佳  宋晓伟  高勋  王兴生  林景全 《物理学报》2017,66(18):185201-185201
开展了波长为532 nm、脉宽为8 ns的纳秒激光诱导空气等离子体射频电磁辐射特性实验研究,基于锥形天线探测空气等离子体在30-800 MHz频谱范围有较强的射频电磁辐射,是等离子体内电偶极子振荡变速运动造成的.实验结果表明:随激光能量增加,30-200 MHz范围内射频辐射强度逐渐变强,但360-600 MHz频率范围射频辐射强度逐渐变弱.等离子体射频辐射的空间分布依赖于入射激光的偏振方向,当激光偏振方向与天线放置方向一致时,该方向上空气等离子体的射频辐射强度高,谱线较丰富.射频辐射总功率随激光能量先增加后降低,采用等离子体电子密度变化对等离子体频率及等离子体衰减系数影响(制约)关系,对射频辐射总功率随激光能量的变化规律进行了解释.  相似文献   

11.
GaAs衬底的固态杂质源脉冲1.06μm激光诱导扩散   总被引:8,自引:0,他引:8  
叶玉堂  李忠东 《光学学报》1997,17(4):19-422
利用1.06αm脉冲Nd:YAG激光,以含Zn的固态杂原在化合物半导体GaAs基片上进行诱导扩散,作出了P-N结。获得了亚微米的的散结结深及1cm^-3量级的表面掺杂浓度,并利用二次离子质谱仪对扩散样品进行成发的逐层扫描分析,研究了结深和掺杂浓度与辐照激光脉冲数,单脉冲数激光能量密度的关系。  相似文献   

12.
X‐ray gas attenuators are used in high‐energy synchrotron beamlines as high‐pass filters to reduce the incident power on downstream optical elements. The absorption of the X‐ray beam ionizes and heats up the gas, creating plasma around the beam path and hence temperature and density gradients between the center and the walls of the attenuator vessel. The objective of this work is to demonstrate experimentally the generation of plasma by the X‐ray beam and to investigate its spatial distribution by measuring some of its parameters, simultaneously with the X‐ray power absorption. The gases used in this study were argon and krypton between 13 and 530 mbar. The distribution of the 2p excited states of both gases was measured using optical emission spectroscopy, and the density of argon metastable atoms in the 1s5 state was deduced using tunable laser absorption spectroscopy. The amount of power absorbed was measured using calorimetry and X‐ray transmission. The results showed a plasma confined around the X‐ray beam path, its size determined mainly by the spatial dimensions of the X‐ray beam and not by the absorbed power or the gas pressure. In addition, the X‐ray absorption showed a hot central region at a temperature varying between 400 and 1100 K, depending on the incident beam power and on the gas used. The results show that the plasma generated by the X‐ray beam plays an essential role in the X‐ray absorption. Therefore, plasma processes must be taken into account in the design and modeling of gas attenuators.  相似文献   

13.
10.6μm激光诱导扩散中热致破坏的抑制   总被引:2,自引:0,他引:2  
在半导体激光诱导扩散实验中,用连续波CO2 10.6μm激光聚焦后照射基片表面。为实现局部区域的选择扩散,激光光斑半径仅数十微米。要使曝光区温度达到扩散实验要求,必须使曝光区功率密度很高。另一方面,Si、InP等半导体材料对10.6μm波长激光的吸收系数随温度的升高而增大,这导致实验时容易产生热致破坏,损伤基片。在分析热致破坏的产生机理后,提出了在聚焦激光束照射下,曝光区温度的数值计算方法。计算结果表明,在半导体基片初始温度为室温时,以恒定功率的激光束照射基片,曝光区温度不能稳定在扩散试验需要的温度范围。在此基础上,提出了预热基片及对曝光区温度进行实时控制等抑制热致破坏的方法,有效地克服了这一困难。这对于用激光微细加工制作出高性能的单片光电集成电路(OEICs)器件有重要意义。  相似文献   

14.
A single-mode frequency stabilized laser with modulation-free and moderate power is desired as a light source for an ultra-high resolution interferometer system and/or a rapid laser calibration system. For this purpose, we developed a new stabilized laser system that utilizes intermittent control of a 2 mW transverse Zeeman stabilized He-Ne laser (Zeeman laser) with an iodine stabilized He-Ne laser (I2 stabilized laser). Because of the intermittent control, working time of the I2 stabilized laser is reduced. The Zeeman laser has two operational modes: independent and slave mode. In the independent mode, the Zeeman laser is stabilized through control of Zeeman beat frequency. Temperature dependent drift of the oscillation frequency during the independent mode is periodically corrected by the slave operation utilizing frequency offset locking to the I2 stabilized laser. Frequency instability of the Zeeman laser in independent and slave modes is 7.7X10-11 and 2.0X10-11, respectively, at the sampling time of 100 s.  相似文献   

15.
Densely packed hafnium tungstate blocks were synthesized by rapid solidification with a CO2 laser. It is shown that the optimum synthesis conditions for HfW2O8 are around 700 W laser power and 1 mm/s scan speed. Scanning electron microscopy (SEM) observation shows that the blocks consist of oriented nano‐threads/rods that grew horizontally on the surface region and vertically in the interior. The orientations of the nanostructures are governed by the heat transfer directions on the surface and in the interior. Raman spectroscopic and X‐ray diffraction studies show that the samples solidified in the cubic structure with minor contents of the orthorhombic phase. This is explained by a compressive stress induced during the rapid solidification process due to a sudden drop of temperature of the molten pool to the ambient. The stress is estimated to be about 0.6 GPa by comparison with high‐pressure Raman study. Some specific Raman bands appear in the samples synthesized with the laser synthetic route but not in the sample by solid‐state reaction. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
The 940 nm Al-free active region laser diodes and bars with a broad waveguide were designed and fabricated. The stuctures were grown by metal organic chemical vapour deposition. The devices show excellent performances. The maximum output power of 6.7 W in the 100 μm broad-area laser diodes has been measured, and is 2.5 times higher than that in the Al-containing active region laser diodes with a narrow waveguide and 1.7 times higher than that in Al-free active region laser diodes with a narrow waveguide. The 19% fill-factor laser diode bars emit 33 W, and they can operate at 15W with low degradation rates.  相似文献   

17.
1 Introduction  High powerlaserdiodescoveringthewavelengthrangefrom 91 0nmto 940nmarewidelyusedforpumpingYb∶YAGsolid statelasers,pumpingytterbium erbiumdopedfiberamplifer (YEDFA ) ,soldering ,materialprocessing,andmedicaltherapy .Inordertoachievehigherpower,highr…  相似文献   

18.
激光器型全光波长转换器的小信号分析   总被引:2,自引:1,他引:1  
马军山  方祖捷 《光学技术》2002,28(6):568-569
当外部光子注入到激光器有源腔中时 ,载流子把被注入光子消耗的一部分放大 ,进而激光器自身的输出功率将降低。基于此 ,可以实现全光波长转换。理论上基于载流子消耗机制 ,对激光器型波长转换器进行了小信号分析 ,给出了频率响应函数。理论分析表明 ,激光器型全光波长转换器的转换速度取决于激光器光子寿命以及激光器腔内的光子密度。  相似文献   

19.
Newtonian fluid dynamics simulations were performed using the Navier–Stokes–Fourier formulations to elucidate the short time‐scale (µs and longer) evolution of the density and temperature distributions in an argon‐gas‐filled attenuator for an X‐ray free‐electron laser under high‐repetition‐rate operation. Both hydrodynamic motions of the gas molecules and thermal conductions were included in a finite‐volume calculation. It was found that the hydrodynamic wave motions play the primary role in creating a density depression (also known as a filament) by advectively transporting gas particles away from the X‐ray laser–gas interaction region, where large pressure and temperature gradients have been built upon the initial energy deposition via X‐ray photoelectric absorption and subsequent thermalization. Concurrent outward heat conduction tends to reduce the pressure in the filament core region, generating a counter gas flow to backfill the filament, but on an initially slower time scale. If the inter‐pulse separation is sufficiently short so the filament cannot recover, the depth of the filament progressively increases as the trailing pulses remove additional gas particles. Since the rate of hydrodynamic removal decreases while the rate of heat conduction back flow increases as time elapses, the two competing mechanisms ultimately reach a dynamic balance, establishing a repeating pattern for each pulse cycle. By performing simulations at higher repetition rates but lower per pulse energies while maintaining a constant time‐averaged power, the amplitude of the hydrodynamic motion per pulse becomes smaller, and the evolution of the temperature and density distributions approach asymptotically towards, as expected, those calculated for a continuous‐wave input of the equivalent power.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号