首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 620 毫秒
1.
The structural, elastic, electronic and thermodynamic properties of the rhombohedral topological insulator Bi2Se3 are investigated by the generalized gradient approximation (GGA) with the Wu–Cohen (WC) exchange-correlation functional. The calculated lattice constants agree well with the available experimental and other theoretical data. Our GGA calculations indicate that Bi2Se3 is a 3D topological insulator with a band gap of 0.287 eV, which are well consistent with the experimental value of 0.3 eV. The pressure dependence of the elastic constants Cij, bulk modulus B, shear modulus G, Young’s modulus E, and Poisson’s ratio σ of Bi2Se3 are also obtained successfully. The bulk modulus obtained from elastic constants is 53.5 GPa, which agrees well with the experimental value of 53 GPa. We also investigate the shear sound velocity VS, longitudinal sound velocity VL, and Debye temperature ΘE from our elastic constants, as well as the thermodynamic properties from quasi-harmonic Debye model. We obtain that the heat capacity Cv and the thermal expansion coefficient α at 0 GPa and 300 K are 120.78 J mol?1 K?1 and 4.70 × 10?5 K?1, respectively.  相似文献   

2.
The structural, elastic, and electronic properties of SrZrN2 under pressure up to 100?GPa have been carried out with first-principles calculations based on density functional theory. The calculated lattice parameters at 0?GPa and 0?K by using the GGA-PW91-ultrasoft method are in good agreement with the available experimental data and other previous theoretical calculations. The pressure dependence of the elastic constants and the elastic-dependent properties of SrZrN2, such as bulk modulus B, shear modulus G, Young's modulus E, Debye temperature Θ, shear and longitudinal wave velocity VS and VL, are also successfully obtained. It is found that all elastic constants increase monotonically with pressure. When the pressure increases up to 140?GPa, the obtained elastic constants do not satisfy the mechanical stability criteria and a phase transition might has occurred. Moreover, the anisotropy of the directional-dependent Young's modulus and the linear compressibility under different pressures are analysed for the first time. Finally, the pressure dependence of the total and partial densities of states and the bonding property of SrZrN2 are also investigated.  相似文献   

3.
4.
The elastic and thermodynamic properties of CsCl-type structure CaB6 under high pressure are investigated by first-principles calculations based on plane-wave pseudopotential density functional theory method within the generalized gradient approximation (GGA). The calculated lattice parameters of CaB6 under zero pressure and zero temperature are in good agreement with the existing experimental data and other theoretical data. The pressure dependences of the elastic constants, bulk modulus B (GPa), and its pressure derivative B′, shear modulus G, Young's modulus E, elastic Debye temperature ΘB, Zener's anisotropy parameter A, Poisson ratios σ, and Kleinmann parameter ζ are also presented. An analysis for the calculated elastic constants has been made to reveal the mechanical stability of CaB6 up to 100 GPa. The thermodynamic properties of the CsCl-type structure CaB6 are predicted using the quasi-harmonic Debye model. The pressure-volume-temperature (P-V-T) relationship, the variations of the heat capacity CV, Debye temperature ΘD, and the thermal expansion α with pressure P and temperature T, as well as the Grüneisen parameters γ are obtained systematically in the ranges of 0-100 GPa and 0-2000 K.  相似文献   

5.
The elastic and electronic structure properties of YNi2B2C under pressure are investigated by performing the generalized gradient approximation (GGA) and local density approximation (LDA) correction scheme in the frame of density functional theory (DFT). The pressure dependences of the normalized lattice parameters a/a0 and c/c0, the ratio c/a, and the normalized primitive volume V/V0 of YNi2B2C are also obtained. The lattice constants and bulk modulus obtained are in agreement with the available experimental and other theoretical data. We have also studied the pressure dependences of elastic properties. It is found that, as pressure increases, the elastic constants C11, C33, C66, C12, and C13 increase, the variation of elastic constant C44 is not obvious. Moreover, our compressional and shear wave velocities VL=6.99 km/s and VS=3.67 km/s as well as the Debye temperature Θ=549.7 K at 0 GPa compare favorably with the available experimental data. The pressure dependences of band structures, energy gap and density of states are also investigated.  相似文献   

6.
The elastic, phonon and thermodynamic properties of the divalent alkaline-earth hexaboride SrB6 are investigated by using plane-wave pseudopotential density functional theory method. The calculated structure parameters and bulk modulus are well consistent with the available experiment and theoretical data. The pressure dependences of elastic constants Cij, bulk modulus B0, shear modulus G, Young's modulus E and Poisson's ratio σ are also presented. With these elastic parameters, we investigate the mechanical stability and compressibility of SrB6. For the thermodynamic properties, both phonon and quasi-harmonic Debye model methods are adopted. Through the comparison with experimental and other theoretical results, we found the method of quasi-harmonic Debye model is a little better. Moreover, the phonon dispersion relations are also obtained. It is found that there are two LO/TO splitting around 5 THz and 26 THz, respectively.  相似文献   

7.
Lishi Ma  Runyue Li 《哲学杂志》2013,93(27):2406-2424
Abstract

Systematic investigations of phase stability and mechanical properties of C15-type ZrM2 (M = Cr, Mo and W) Laves phases were performed using first-principles calculations. The formation enthalpies of ZrM2 are in good agreement with the theoretical and experimental values. The elastic properties, including elastic constants and moduli, Poisson’s ratio and B/G, were discussed. The elastic anisotropy was also investigated via the anisotropy indexes (AU, AZ, Ashear and Acomp), the anisotropy of shear modulus and the 3D construction of bulk and Young’s moduli. The elastic anisotropy of ZrM2 is in order of ZrCr2 < ZrMo2 < ZrW2. The variations in the shear modulus and hardness show similar trends with increasing values from ZrCr2 to ZrW2. The electronic structures for these C15-type Laves phases were analysed to obtain deeper understanding of chemical bonds and phase stabilities. Finally, the sound velocities and Debye temperatures were also investigated.  相似文献   

8.
First-principles calculations of the crystal structure and the elastic properties of OsN2 have been carried out with the plane-wave pseudopotential density functional theory method. The calculated values are in very good agreement with experimental data as well as with some of the existing model calculations. The dependence of the elastic constants cij, the aggregate elastic moduli (B,G,E), Poisson’s ratio, and the elastic anisotropy on pressure has been investigated. Moreover, the variation of the Debye temperature and the compressional and shear elastic wave velocities with pressure P up to 60 GPa at 0 K have been investigated for the first time.  相似文献   

9.
Numerical calculations based on the full potential muffin-tin orbitals method (FP-LMTO) within the local density approximation (LDA) and the local spin-density approximation (LSDA) to investigate the structural, electronic and thermodynamic properties of filled skutterudite EuFe4Sb12 are presented. The electronic band structure and density of states profiles prove that this material is a conductor. The present investigation is also extended to the elastic constants, such as the bulk modulus B, anisotropy factor A, shear modulus G, young's modulus E, Poisson's ratio ν, and the B/G ratio with pressure in the range of 0–40 GPa. The sound velocities and Debye temperatures are also predicted from the above constants. The variations of the primitive cell volume, expansion coefficient α, bulk modulus B, heat capacity (Cp and Cv), Debye temperature θD, Helmholtz free energy A, Gibbs free energy G, entropy S, and internal energy U with pressure and temperature in the range 0–3000 K are calculated successfully.  相似文献   

10.
The structural, elastic, electronic properties and Debye temperature of Ni3Ta under different pressures are investigated using the first-principles method based on density functional theory. Our calculated equilibrium lattice parameters at 0 GPa well agree with the experimental and previous theoretical results. The calculated negative formation enthalpies and elastic constants both indicate that Ni3Ta is stable under different pressures. The bulk modulus B, shear modulus G, Young’s modulus E and Poisson’s ratio ν are calculated by the Voigt–Reuss–Hill method. The bigger ratio of B/G indicates Ni3Ta is ductile and the pressure can improve the ductility of Ni3Ta. In addition, the results of density of states and the charge density difference show that the stability of Ni3Ta is improved by the increasing pressure. The Debye temperature Θ D calculated from elastic modulus increases along with the pressure.  相似文献   

11.
<正>This paper stuides the elastic constants and some thermodynamic properties of Mg2SixSnn-1(x=0,0.25,0.5, 0.75,1) compounds by first-principles total energy calculations using the pseudo-potential plane-waves approach based on density functional theory,within the generalized gradient approximation for the exchange and correlation potential. The elastic constants of Mg2SixSnn-1 were calculated.It shows that,at 273 K,the elastic constants of Mg2Si and Mg2Sn are well consistent with previous experimental data.The isotropy decreases with increasing Sn content.The dependences of the elastic constants,the bulk modulus,the shear modulus and the Debye temperatures of Mg2Si and Mg2Si0.5Sn0.5 on pressure were discussed.Through the quasi-harmonic Debye model,in which phononic effects were considered,the specific heat capacities of Mg2SixSn1-x at constant volume and constant pressure were calculated.The calculated specific heat capacities are well consistent with the previous experimental data.  相似文献   

12.
张品亮  龚自正*  姬广富  刘崧 《物理学报》2013,62(4):46202-046202
基于密度泛函理论的第一性原理计算获得了α-Ti2Zr的晶体结构、弹性常数、德拜温度和电子分布情况, 研究了它们与压力的关系. 计算得到的晶体结构参数与实验值一致. 运用有限应变方法计算得到了α-Ti2Zr的体积模量B、剪切模量G、杨氏模量E和泊松比σ. BE的零压值分别为101.2和35.6 GPa. G/B的值较小, 并且随着压力的增加而减小, 表明α-Ti2Zr具有优异的延展性. 基于弹性常数得到平均声速, 从而获得了德拜温度Θ=321.7 K. 通过解Christoffel方程获得的压缩波和剪切波数据揭示α-Ti2Zr具有较强的各向异性. 此外, 压力诱导电子从s轨道到d轨道的转移说明在一定压力下α-Ti2Zr将转变为β相. 关键词: 第一性原理 α-Ti2Zr')" href="#">α-Ti2Zr 物性 高压  相似文献   

13.
The equilibrium lattice constants, temperature dependence of bulk modulus, the pressure dependence of the normalized volume V/V0, elastic constants Cij and bulk modulus of LaNi5 crystal are obtained using the firstprincipies piane-wave pseudopotential method in the GGA-PBE generalized gradient approximation as well as the quasi-harmonic Debye model. We analyse the relationship between bulk modulus and temperature up to 2000 K and obtain the relationship between bulk modulus B and pressure at diFFerent temperatures. It is found that the bulk modulus B increases monotonously with increasing pressure. Moreover, the pressure dependences of Debye temperatures and the pressure derivatives of lattice constants are also successfully obtained. The calculated results are in agreement with the experimental data and the other theoretical results.  相似文献   

14.
The structural, elastic, electronic and optical properties of the platinum-based superconductor SrPt3P under pressure are investigated by the generalized gradient approximation with the Perdew–Burke–Ernzerhof exchange-correlation functional in the framework of density-functional theory. The calculated structural parameters (a, c) and the primitive cell volume V of SrPt3P at the ground state are in good agreement with the available experimental data and seem to be better than other calculated results. The pressure dependences of the elastic constants \mathop C\nolimits_{ij}, bulk modulus B, shear modulus G, Young’s modulus E and Poisson’s ratio σ of SrPt3P are also obtained successfully. The computed elastic constants indicate that SrPt3P is mechanically stable up to 100 GPa. The obtained B/G is 2.56 at the ground state, indicating that SrPt3P behaves in a ductile manner. The ratio B/G also increases with growing pressures, indicating that the structure becomes more and more ductile. Even though SrPt3P is an ionic-covalent crystal, the obtained density of states shows that it has metallic characteristic. These conclusions can be further demonstrated by analysing the charge and Mulliken population. In addition, we have investigated the dielectric function and the loss function. It is found that the dielectric function in (E||x, E||y) is isotropic, whereas the directions (E||x, E||z) are anisotropic; the effect of pressure on the loss function of the deep ultraviolet region gradually increases as the pressure increases.  相似文献   

15.
The elastic constants and thermodynamic properties of c-BN are calculated using the first-principles plane wave method with the relativistic analytic pseudopotential of the Hartwigen, Goedecker and Hutter (HGH) type in the frame of local density approximation and using the quasi-harmonic Debye model, separately. Moreover, the dependences of the normalized volume V/V0 on pressure P, as well as the bulk modulus B, the thermal expansion α, and the heat capacity CV on pressure P and temperature T are also successfully obtained.  相似文献   

16.
We have investigated structural and elastic properties of PtN2 under high pressures using norm-conserving pseudopotentials within the local density approximation (LDA) in the frame of density-functional theory. Calculated results of PtN2 are in agreement with experimental and available theoretical values. The a/a0, V/V0, ductility/brittleness, elastic constants Cij, shear modulus C′, bulk modulus B, shear modulus G, Young's modulus E, Poisson's ratio σ and anisotropy factor A as a function of applied pressure are presented. Through the quasi-harmonic Debye model, we also study thermodynamic properties of PtN2. The thermal expansion versus temperature and pressure, thermodynamic parameters X (X=Debye temperature or specific heat) with varying pressure P, and heat capacity of PtN2 at various pressures and temperatures are estimated.  相似文献   

17.
利用密度泛函理论研究了高温高压下Zr2AlC的结构和热力学性质,计算得到Zr2AlC的晶格参数与实验值符合较好.研究了Zr2AlC的弹性常数、体模量、剪切模量和杨氏模量等力学性质随压力变化的趋势.同时研究了维氏硬度随压力的变化趋势.通过计算得到的杨氏模量预测了Zr2AlC的弹性各向异性.最后,基于准简谐德拜模型,成功预测了Zr2AlC的德拜温度、热容、热膨胀系数和Grüneisen参数随着压强和温度的变化关系.  相似文献   

18.
李世娜  刘永 《物理学报》2010,59(10):6882-6888
利用基于密度泛函理论的第一性原理全势线性缀加平面波方法,研究了立方反ReO3结构Cu3N在零温(0K)零压下的平衡晶格常数、体弹模量及其对压强的一阶导数,计算结果与其他实验及理论结果基本相符.同时得出Cu3N的弹性常数,Poisson比等,并分析出Cu3N在零温零压下是稳定的.通过准谐Debye模型计算Cu3N的热力学性质,得到了Cu3N的晶格常数、等压比热容、等容比热容、热胀系数与温度和压强之间的关系,同时计算出不同温度不同压强下其体弹模量及Debye温度的值。  相似文献   

19.
The structural, elastic and thermodynamic properties of the α (tetragonal) and β (orthorhombic) polymorphs of the Sr2GeN2 compound have been examined in detail using ab initio density functional theory pseudopotential plane-wave calculations. Apart the structural properties at the ambient conditions, all present reported results are predicted for the first time. The calculated equilibrium lattice parameters and inter-atomic bond-lengths of the considered polymorphs are in good agreement with the available experimental data. It is found that α-Sr2GeN2 is energetically more stable than β-Sr2GeN2. The two examined polymorphs are very similar in their crystal structures and have almost identical local environments. The single-crystal and polycrystalline elastic parameters and related properties – including elastic constants, bulk, shear and Young’s moduli, Poisson’s ratio, anisotropy indexes, Pugh’s criterion, elastic wave velocities and Debye temperature – have been predicted. Temperature and pressure dependence of some macroscopic properties – including the unit-cell volume, bulk modulus, volume thermal expansion coefficient, heat capacity and Debye temperature – have been evaluated using ab initio calculations combined with the quasi-harmonic Debye model.  相似文献   

20.
ABSTRACT

The sound velocity properties of single-crystal rhodochrosite (MnCO3) were determined up to 9.7?GPa at ambient temperature by Brillouin scattering spectroscopy. Six elastic constants were calculated by a genetic algorithm method using the Christoffel's equations at each pressure. The elastic constants increased linearly as a function of pressure and its pressure derivatives ?Cij/?P for C11, C33, C44, C12, C13, C14 were 5.86 (±0.36), 3.82 (±0.44), 2.06 (±0.39), 5.07 (±0.27), 5.34 (±0.44), 1.52 (±0.24), respectively. Based on the derived elastic constants of rhodochrosite, the aggregate adiabatic bulk and shear moduli (Ks and G) were calculated using the Voigt-Reuss-Hill averages and the linear fitting coefficients (?Ks/?P)T and (?G/?P)T were 5.05(±0.26) and 0.73(±0.05), respectively. The aggregate Vp of rhodochrosite increased clearly as a function of pressure and its pressure derivative ?Vp/?P was 7.99(±0.53)?×?10?2?km/(s?GPa), while the aggregate Vs increased slowly and ?Vs/?P was only 1.19(±0.12)?×?10?2?km/(s?GPa). The anisotropy factor for As of rhodochrosite increased from ~40% at 0.8?GPa to ~48% at 9.7?GPa, while Ap decreased from ~19% to ~16% at the corresponding pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号