首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用固相烧结法制备了不同Gd掺杂含量的0.7Bi_(1-x)Gd_(x)Fe_(0.95)Ga_(0.05)O_(3)-0.3BaTiO_3(BG_xFG-BT,x=0,0.05,0.1,0.15,0.2)陶瓷,系统研究了Gd掺杂对BG_xFG-BT陶瓷的晶体结构、微观形貌、介电性能以及多铁性能的影响.通过X射线衍射图谱分析、扫描电镜形貌分析、X射线光电子能谱分析等工具表明,Gd掺杂会使BG_xFG-BT陶瓷由菱面体(R3c)结构转变为赝立方(P4mm)结构,晶粒尺寸会明显减小,从未掺入Gd时的6.2μm)降低到约3.2μm左右,同时发现少量的Gd掺杂能够抑制BFG-BT陶瓷中Fe~(2+)离子的产生,减少氧空位的存在.最终导致,在适量的Gd掺杂下,陶瓷的介电性能和铁电性能均得到明显改善.适量的Gd掺杂可使介电常数增加、介电损耗减少、电滞回线形状改善、剩余电极化强度增加(最高达9.06μC/cm~2).同时,在磁性能方面,Gd掺杂陶瓷均表现铁磁性,剩余磁极化强度与饱和磁化强度均有显著提高.  相似文献   

2.
采用水热法制备纳米Ce_(0.95)M_(0.05)O_2(M=Fe~(3+),Nd~(3+),Eu~(3+))固溶体,系统研究了固溶体的微观晶体结构及光谱特性。X射线衍射(XRD)结果表明,掺杂样品均为单相萤石立方结构,无对应于掺杂离子氧化物的杂相存在,说明三种掺杂离子均成功掺入CeO_2晶格内而形成固溶体。计算各样品的晶粒尺寸,得到掺杂固溶体的粒度均低于20 nm。采用紫外可见光谱(UV-Vis)表征固溶体的电子跃迁性能。与纯CeO_2相比,掺杂固溶体的吸收边均发生红移;同时,拟合得到各样品能隙由大到小依次为:CeO_2(3.13 eV)Ce_(0.95)Eu_(0.05)O_2(3.04 eV)Ce_(0.95)Nd_(0.05)O_2(2.94 eV)Ce_(0.95)Fe_(0.05)O_2(2.75 eV)。荧光光谱(PL)测试表明,掺杂样品的发射峰强度均比纯CeO_2低,其中Fe~(3+)掺杂固溶体样品的荧光强度降低最为明显。其原因在于Fe~(3+)掺杂会使固溶体晶格内引入更多缺陷,从而阻碍了电子与空穴的复合。将固溶体作为催化剂添加到Mg_2Ni-Ni中,球磨制得Mg_2Ni-Ni-5%Ce_(0.95)M_(0.05)O_2复合材料,系统测试复合材料电极的电化学和动力学储氢性能。结果表明, Ce_(0.95)M_(0.05)O_2固溶体可有效提高Mg_2Ni-Ni合金复合材料的电化学放电性能,最大放电容量分别为:Ce_(0.95)Fe_(0.05)O_2(874.8 mAh·g~(-1))Ce_(0.95)Nd_(0.05)O_2(827.8 mAh·g~(-1))Ce_(0.95)Eu_(0.05)O_2(822.7 mAh·g~(-1))CeO_2(764.9 mAh·g~(-1))。同时,催化剂还可有效提高复合材料的电化学循环稳定性,经20次循环后的容量保持率为:Ce_(0.95)Fe_(0.05)O_2(49.8%)Ce_(0.95)Eu_(0.05)O_2(49.7%)Ce_(0.95)Nd_(0.05)O_2(46.3%)CeO_2(34.1%)。对复合材料进行高倍率放电性能(HRD)表征,掺杂固溶体催化剂能够显著提高样品的大电流放电性能,如当放电电流密度为200 mAh·g~(-1)时,各样品的HRD为:Ce_(0.95)Fe_(0.05)O_2(59.5%)Ce_(0.95)Eu_(0.05)O_2(57.4%)Ce_(0.95)Nd_(0.05)O_2(55.7%)CeO_2(54.4%)。采用恒电位阶跃测试催化剂对复合材料中H扩散能力的影响, H扩散系数由大到小依次为Ce_(0.95)Fe_(0.05)O_2Ce_(0.95)Eu_(0.05)O_2Ce_(0.95)Nd_(0.05)O_2CeO_2。分析认为,固溶体的催化效果与其氧空位浓度、晶格缺陷及掺杂离子易变价特性密切相关。  相似文献   

3.
采用高温固相法合成了La_(2-x)MgTiO_6∶xDy~(3+)和La_(2-x-y)MgTiO_6∶xDy~(3+),yEu~(3+)系列荧光粉,通过X射线衍射对其相结构进行了表征,优化了荧光粉的组成,研究了Dy~(3+)和Eu~(3+)浓度对发光强度的影响,测试了荧光粉的荧光光谱和寿命,研究了Dy~(3+)和Eu~(3+)之间的能量传递机理和能量传递效率。结果表明:所有合成的掺杂荧光粉均为单相物质;La_(2-x)MgTiO_6∶xDy~(3+)最佳掺杂浓度为x=0.05;在350 nm近紫外光激发下,La_(2-x-y)MgTiO_6∶xDy~(3+),yEu~(3+)显示出Dy~(3+)的特征黄、蓝光发射和Eu~(3+)的特征红光发射;Dy~(3+)的荧光寿命呈双指数衰减,随着Eu~(3+)浓度的增大,Dy~(3+)的荧光寿命逐渐减小,证明了Dy~(3+)和Eu~(3+)离子之间存在着能量传递;能量传递效率随着Eu~(3+)掺杂浓度的增加而增加,La_(1.83)MgTiO_6∶0.05Dy~(3+),0.12Eu~(3+)荧光粉的能量传递效率为53.9%;改变调节Eu~(3+)的掺杂浓度可以得到从冷白色到暖白色的荧光粉,La_(1.83)MgTiO_6∶0.05Dy~(3+),0.12Eu~(3+)的色坐标为(0.337 3,0.354 4)。  相似文献   

4.
李德铭  方松科  童金山  苏健  张娜  宋桂林 《物理学报》2018,67(6):67501-067501
采用固相反应法制备Sm_(1-x)Ca_xFeO_3(x=0,0.1,0.2,0.3)样品,研究Ca~(2+)掺杂对SmFeO_3介电性能、铁磁性及磁相变温度的影响.X射线衍射图谱分析表明:所有样品的主衍射峰与SmFe03相符合且具有良好的晶体结构.随着x的增加,SmFeO_3样品的晶粒尺寸由原来的0.5μm逐渐增大到2μm.当f=1 kHz时,Sm_(1-x)Ca_xFeO_3(x=0.1,0.2,0.3)样品的ε_r分别是SmFe03的5倍、3倍和2.6倍,而tgσ增大一个数量级.在3T磁场作用下,SmFe03样品的M-H呈线性,随着x的增加,M-H逐渐趋向饱和,Sm_(1-x)Ca_xFeO_3(x=0.1,0.2,0.3)样品的M_r分别是SmFeO_3的20倍、31倍和68倍.X射线光电子能谱分析表明:Fe~(2+)和Fe3+共存于Sm_(1-x)Ca_xFeO_3样品中,Fe~(2+)/Fe~(3+)比例随着x的增加而增大,证明Ca~(2+)掺杂增加了Fe~(2+)的含量,形成Fe~(2+)—O~(2-)—Fe~(3+)超交换作用,增强SmFe03的铁磁特性.测量了Sm_(1-x)Ca_xFeO_3样品在外加磁场为1000 Oe(1 Oe=79.5775 A/m)的M-T变化关系,观测到其自旋重组温度(T_(SR))和尼尔温度(T_N)分别为438 K和687 K,发现SmFe03样品的T_(SR)和T_N均随着x的增加向低温方向移动,当x=0.3时,自旋重组现象消失.这主要是SmFeO_3样品磁结构的稳定性和Fe~(3+)—O~(2-)—Fe~(3+)及Sm~(3+)—O~(2-)—Fe~(3+)超交换三者共同作用的结果.  相似文献   

5.
本文采用传统固相反应法制备多晶La_(0.5-x)Nd_xSr_(0.5)CoO_3(x=0,0.1,0.15)系列样品,通过测量其磁化强度与温度变化曲线(M~T)、磁化强度与外场变化曲线(M~H)、电子自旋共振谱(ESR)和电阻率与温度变化曲线(ρ~T)对样品的磁性和电输运性质进行了研究.结果表明:由于Nd~(3+)离子掺杂,使得系统中Co~(3+)和Co~(4+)离子之间的铁磁耦合增大,自旋与晶格的耦合作用增强,从而导致掺杂前后样品的磁性方面发生了改变:样品的铁磁转变温度TC和磁熵变值|ΔSM|均随掺杂量x的增加而增大,三个样品的TC分别为:190K、205K和233K,x=0.0样品在TC附近的相变为二级相变,x=0.1和x=0.15样品在TC附近的相变为一级相变.同样的,Nd~(3+)离子掺杂使得样品在电输运性质方面也发生了改变:由于Nd~(3+)离子掺杂,体系内Co离子的自旋态和无序性等均发生改变,从而使x=0.1样品中铁磁导电区域增大,尽管x=0.0和x=0.1样品均表现出绝缘体行为,但是随着掺杂量x的增加,电阻率大幅降低.  相似文献   

6.
采用溶胶-凝胶技术合成了纯BiFeO_3(BFO),A/B位钕锌共掺杂Bi_(0.9)Nd_(0.1)Fe_(0.95)Cr_(0.05)O_3(BNFCO)纳米颗粒。并系统地研究了样品的结构、形貌和多铁性能。测试表明A/B位钕铬共掺极大地提高了BiFeO_3的铁电和铁磁性能。BNFCO样品的漏电流密度比纯BFO样品降低了约两个数量级,剩余极化强度(Pr)和矫顽场(Ec)分别高达13.508μC/cm~2和6.702 kV/cm。同时由磁滞回线发现矫顽力(Hc)和剩磁(Mr)也都有了很大的提高。证明了采用Nd-Cr共掺杂BNFCO纳米颗粒可以高效地提高BFO多铁性能。  相似文献   

7.
采用固相反应法制备双层钙钛矿(La_(1-x)Eu_x)_(4/3)Sr_(5/3)Mn_2O_7(x=0.0,0.1,0.2)多晶样品,并研究其结构,磁性和电输运性质.XRD结果表明,三个样品均为良好的单相结构.样品(La_(1-x)Eu_x)_(4/3)Sr_(5/3)Mn_2O_7(x=0.0,0.1,0.2)在低温区的ZFC曲线和FC曲线出现明显分歧,表现出团簇自旋玻璃的特征.对电阻率-温度曲线的拟合结果表明,三个样品在高温区的导电机制不同.我们认为这是由于半径较小的Eu~(3+)离子替代La~(3+)离子使La位离子平均半径减小,引起晶格发生畸变,同时,Eu~(3+)离子倾向于占据钙钛矿层与岩盐层之间的R-位,使La~(3+),Sr~(3+),Eu~(3+)离子在掺Eu样品中的分布更加有序导致的.  相似文献   

8.
采用高温固相法合成具有余辉性能的发光材料NaLa_(0.7)(MoO_4)_(2-x)(WO_4)_x∶0.3Eu~(3+)(x=0,0.5,1,1.5,2)。用X射线衍射(XRD)和荧光光谱对样品的晶体结构和发光特性进行表征。测试结果表明,在900℃下烧结8 h所合成的NaLa_(0.7)(MoO_4)_(2-x)(WO_4)_x∶0.3Eu~(3+)样品为纯相Na La(Mo O_4)_2,样品可被近紫外光393nm和蓝光462 nm有效激发,其发射主峰位于615 nm处,属于Eu3+的5D0-7F2跃迁。Na La_(0.7)(Mo O_4)_(2-x)-(WO_4)_x∶0.3Eu~(3+)的发光强度随着W6+浓度的增加而增大,当W6+掺杂量x=1时发光最强,而后随W6+掺杂浓度的增加出现浓度猝灭现象。通过计算得到样品在393 nm和462 nm激发下的色坐标,当W6+的掺杂量x=1时,样品的红光色纯度最好。  相似文献   

9.
本文利用溶胶-凝胶法制备了名义成分为La_(2/3)Sr_(1/3)Fe_xMn_(1-x)O_3(x=0.0,0.1,0.2,0.3,0.5)的系列样品,样品先后经过773,873,1073 K热处理,热处理时采用缓慢升温方式,X射线衍射分析表明,该系列样品均为单相钙钛矿结构,空间群为R3c,利用X'Pert HighScore Plus软件计算了样品的晶粒尺寸、晶格常数、晶胞体积及键长、键角,利用物理性能测量系统测量了样品的磁性,发现样品在10K的磁矩随掺杂量的增加而减小,但存在两个明显不同的变化区域:从x=0到x=0.2时,平均每个分子的磁矩从2.72μB迅速下降到0.33μB,居里温度从327 K下降到95 K,下降了232 K;而从x=0.2到x=0.5时,平均每个分子的磁矩从0.33μB缓慢下降到0.05μB,居里温度从95K下降到46K,只下降了49K,我们认为Fe与Mn离子磁矩反平行是样品磁矩随Fe掺杂量增加而下降的原因之一。  相似文献   

10.
陈诚  卢建安  杜微  王伟  毛翔宇  陈小兵 《物理学报》2019,68(3):37701-037701
采用柠檬酸-硝酸盐法制备了Bi_(6-x)Nd_xFe_(1.4)Ni_(0.6)Ti_3O_(18)(BNFNT-x,x=0.00,0.10,0.20,0.25和0.30)前驱液,再经过干燥、烧结过程制备了单相多晶材料.研究发现,少量Nd掺杂有助于提高样品的铁电性能,BNFNT-0.25样品的铁电性能(2Pr)最大,约达到19.7μC/cm~2.室温下BNFNT-0.20样品磁性能(2Ms)最大约达到4.132 emu/g(1 emu/g=10–3 A·m~2/g).变温介电损耗结果表明Nd掺杂降低了Fe~(3+)和Fe~(2+)间的电子转移或跃迁的激活能.X射线光电子能谱结果表明小量Nd掺杂有助于增强Bi离子稳定性,对改善样品的铁电性能有积极意义.  相似文献   

11.
《发光学报》2021,42(9)
通过高温固相法成功合成了系列宽带发射且发光颜色可调的Ba_(1-x)Al_(12)O_(19)∶xCe~(3+)(0.01≤x≤0.09)荧光粉。X射线衍射、扫描电子显微镜和能量色散X射线能谱元素映射图像结果证明合成了纯相且元素分布均匀的铝酸盐荧光粉。在361 nm近紫外光激发下,随着Ce~(3+)掺杂浓度逐渐增加,Ba_(1-x)Al_(12)O_(19)∶xCe~(3+)样品的发光强度逐渐增强且发光颜色由蓝光逐渐调节到青光。在x=0.05 mol时,Ba_(0.95)Al_(12)O_(19)∶0.05Ce~(3+)样品发光强度达到最大值,荧光内量子产率为30.8%。稳态光谱和荧光寿命结果证实,当Ce~(3+)掺杂浓度大于0.05 mol时,Ba_(1-x)Al_(12)O_(19)∶xCe~(3+)样品发生浓度猝灭,该浓度猝灭主要归因于邻近的Ce~(3+)-Ce~(3+)之间的能量传递。Ba_(0.95)Al_(12)O_(19)∶0.05Ce~(3+)样品表现出光谱覆盖范围为365~650 nm、主峰位于450 nm的青光发射,其半高宽为120 nm。该不对称的宽发射带主要源于占据基质晶格中Ba1和Ba2格位的两个Ce~(3+)发光中心。将Ba_(0.95)Al_(12)O_(19)∶0.05Ce~(3+)和商用红色荧光粉混合制备出简单的可被紫外光(λ_(ex)=365 nm)激发的二色pc-WLEDs,并实现了显色指数和相关色温可调的全可见光谱白光。该宽带青色发光的Ba_(0.95)Al_(12)O_(19)∶0.05Ce~(3+)荧光粉在全光谱照明领域具有潜在应用。  相似文献   

12.
通过晶体结构、电学和磁学测量,我们系统地研究了Fe掺杂的烧绿石Bi_(2-x)Fe_xIr_2o_7(x=0.1,0.2,0.3,0.4)样品.X射线衍射证实了高结晶的Bi_(2-x)Fe_xIr_2o_7保持立方结构.样品体系显示出金属-绝缘体转变:当x=0.1,转变温度为63.870K.随着Fe含量的增加,转变温度呈上升趋势.掺杂样品显示出增强的反铁磁性,并随着Fe掺杂增加,反铁磁性增强.当掺杂量增加到0.3时,样品发生类自旋玻璃态转变.  相似文献   

13.
通过晶体结构、电学和磁学测量,我们系统地研究了Fe掺杂的烧绿石Bi_(2-x)Fe_xIr_2o_7(x=0.1,0.2,0.3,0.4)样品.X射线衍射证实了高结晶的Bi_(2-x)Fe_xIr_2o_7保持立方结构.样品体系显示出金属-绝缘体转变:当x=0.1,转变温度为63.870K.随着Fe含量的增加,转变温度呈上升趋势.掺杂样品显示出增强的反铁磁性,并随着Fe掺杂增加,反铁磁性增强.当掺杂量增加到0.3时,样品发生类自旋玻璃态转变.  相似文献   

14.
采用水热方法合成Ce1-x(Fe0.5La0.5)xO2-δ固溶体。利用X射线衍射技术(X-ray diffraction tech-nique,XRD)表征样品的相结构,并对固溶体的晶胞参数进行拟合,通过紫外可见漫反射光谱(UV-Vis dif-fraction spectrum)及拉曼光谱(Raman spectrum)表征其电子跃迁性能及由于双离子掺杂所引起的一系列掺杂效应。XRD结果表明,Ce1-x(Fe0.5La0.5)xO2-δ固溶体为CeO2立方萤石结构,当掺杂量增加到x=0.30时出现了微弱的Fe2O3杂相衍射峰;讨论了两种离子在晶格中不同的取代位置。晶胞参数随着掺杂量的增大而逐渐增大,当掺杂量达到x=0.18后保持基本不变。紫外漫反射光谱表明,随着掺杂量的增大,固溶体的带隙吸收边红移,即能隙逐渐减小,Fe离子在CeO2晶格中表现为+3价。Raman光谱F2g振动峰位逐渐向低波数方向移动,同时振动峰逐渐宽化,进一步证明了掺杂离子的影响效应。  相似文献   

15.
本篇文章主要研究钙钛矿氧化物La_(0.8-x)Eu_xSr_(0.2)MnO_3(x=0,0.05)中A位掺杂铕(Eu)后对样品的磁性和磁熵变的影响.采用传统的固相反应法制备多晶样品,根据数据拟合得到XRD图像和晶格参数,通过对两样品的M-T曲线和M-H曲线研究发现:x=0和x=0.05两样品在高温区均表现出顺磁性,居里温度T_c分别为283 K(x=0)和284 K(x=0.05),且在居里温度附近表现出铁磁性.随着掺杂量增加,样品的居里外斯温度降低(θ_(x=0)=322 K、θ_(x=0.05)=304 K),表明Eu~(3+)掺杂改变了系统内的铁磁耦合.在7 T磁场下磁熵变的最大值分别为2.73 J/kg·K和4.19 J/kg·K,表明Eu~(3+)掺杂使得最大磁熵变值增大.对比制冷效率,发现该系列样品具有作为磁制冷材料的潜质.  相似文献   

16.
对多晶Y_3Fe_(5-x)Mn_xO_(12)(x=0.05和0.09),得到300K下的中子衍射曲线。发现当x=0.05时,Mn~(3+)离子占据16a和24d位置的几率分别为0.72和0.28;当x=0.09时,Mn~(3+)离子全部占据16a位置;还得到两种组分16a和24d位置各自的磁矩值。 在外磁场(800—10KOe)下测量Y_3Fe_(5-x)Mn_xO_(12)(x=0—0.11)的磁化曲线,温度范围是1.5—300K。得到饱和磁矩值;并利用趋近饱和定律确定1.5K下的磁晶各向异性常数k_1值,发现|K_1|值随含锰量增加而减小。  相似文献   

17.
The magnetic properties and magnetocaloric effect(MCE) in EuTi_(1-x)Co_xO_3(x = 0, 0.025, 0.05, 0.075, 0.1) compounds have been investigated. When the Ti~(4+) ions were substituted by Co2+ions, the delicate balance was changed between antiferromagnetic(AFM) and ferromagnetic(FM) phases in the EuTiO_3 compound. In EuTi_(1-x)Co_xO_3 system, a giant reversible MCE and large refrigerant capacity(RC) were observed without hysteresis. The values of -?S_M~(max) were evaluated to be around 10 J·kg~(-1)·K~(-1) for EuTi_(0.95)Co_(0.05)O_3 under a magnetic field change of 10 kOe. The giant reversible MCE and large RC suggests that EuTi_(1-x)Co_xO_3 series could be considered as good candidate materials for low-temperature and low-field magnetic refrigerant.  相似文献   

18.
本文采用纳米EuB_6和Eu_2O_3粉末为激活剂原料,提出了一步法和两步法,在常压条件下制备获得了CaAlSiN_3:Eu~(2+)红色荧光粉.对不同掺杂Eu浓度(2%—10%)的样品进行了晶体结构、形貌、发光性能的分析研究.根据能谱与X射线衍射图谱(XRD)分析可知,两步法合成的样品随Eu浓度的增加晶胞体积会逐渐增大,且样品中B的含量增加;而一步法合成的样品随Eu浓度增加晶胞体积先增大后减小,且B含量相对上面的样品含量较少,O含量却较大.另外,在460 nm蓝光激发下,两步法合成的样品(纳米EuB_6掺杂)的发射最强峰在652—680 nm范围,而一步法合成的样品(纳米Eu_2O_3掺杂)的发射最强峰只在630—637 nm范围,且前者的荧光相对强度都强于后者.结合XRD以及荧光光谱数据可以认为两种常压氮化制备方法都会让B元素引入到基质中,B的引入不但降低基质中O的含量,而且改变Eu~(2+)离子的晶体场环境从而调节CaAlSiN_3:Eu~(2+)荧光粉的发光峰位.结合绿光发射荧光粉和纳米EuB_6掺杂的Ca_(0.94)AlSiN_3:0.06Eu~(2+)荧光粉在蓝光芯片激发下可以获得色温在3364 K,显色指数可以达到91的暖白发光二极管器件.本实验采用的方法简单,避免使用昂贵复杂的气压烧结设备以及还原性气体烧结设备,有望实现工业化应用以及降低生产成本.  相似文献   

19.
采用水热法制备了白光LED用NaGd_(0.95-x)(WO_4)_2∶0.05Eu~(3+),x Bi~(3+)(x=0,0.02,0.04,0.06,0.08)和NaGd_(0.95-y)(WO_4)_2∶0.05Eu~(3+),y Sm~(3+)(y=0,0.01,0.02,0.03,0.04)系列红色荧光粉,通过X射线衍射仪、扫描电子显微镜及荧光分光光度计等表征手段分析了样品的物相结构、颗粒形貌以及发光性质。结果表明:少量离子掺杂对NaGd(WO_4)_2的晶体结构影响较小,样品均为四方晶系、白钨矿结构的纯相;颗粒形貌呈四方盘状,且粒度均匀,分散性良好,Bi~(3+)或Sm~(3+)的引入使颗粒尺寸由原来的4μm分别增加至5μm和6μm。该系列荧光粉均可被近紫外光(394 nm)有效激发,其最强发射峰位于614 nm处,归属于Eu~(3+)的5D0→7F2电偶极跃迁。掺杂适量的Bi~(3+)或Sm~(3+)可有效提高NaGd_(0.95)(WO_4)_2∶0.05Eu~(3+)荧光粉的发光强度和红光的色纯度,其中Sm~(3+)的引入对其影响更为明显。  相似文献   

20.
孙晓东  徐宝  吴鸿业  曹凤泽  赵建军  鲁毅 《物理学报》2017,66(15):157501-157501
研究了Tb掺杂对双层锰氧化物La_(4/3)Sr_(5/3)Mn_2O_7磁熵变和电输运性质的影响.样品采用传统固相反应法制备,两样品的名义组分可以表示为(La_(1-x)Tb_x)_(4/3)Sr_(5/3)Mn_2O_7(x=0,0.025),磁场为7 T时的最大磁熵变?S_M分别为-4.60 J/(kg·K)和-4.18 J/(kg·K).比较后发现,Tb元素的掺杂使得最大磁熵变值减小,但同时增大了相对制冷温区.电性测量结果表明,x=0.025的样品在高温区的导电机制可以用小极化子模型解释,与母体三维变程跳跃模型不同;当温度降低至三维长程铁磁有序温度(T_c~(3D))附近时,掺杂样品发生金属绝缘相变;掺杂后样品在T_c~(3D)附近,磁电阻取得极大值(约为56%),表明是本征磁电阻效应.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号