首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用水热方法合成Ce1-x(Fe0.5 La0.5)xO2-δ固溶体.利用X射线衍射技术(X-ray diffraction technique,XRD)表征样品的相结构,并对固溶体的晶胞参数进行拟合,通过紫外可见漫反射光谱(UV-Vis diffraction spectrum)及拉曼光谱(Raman spectru...  相似文献   

2.
以TaCl5和Na2WO4为原料, 采用水热法在170 ℃制备性能良好的掺钽钨青铜(TaxWO3)纳米线。利用X射线衍射技术(XRD)、扫描电镜(SEM)、紫外可见漫反射光谱(UV-Vis)及拉曼光谱(Raman)等分析手段, 对该材料的结构、形貌及光谱性能进行表征。XRD结果表明: TaxWO3纳米材料为六方相结构氧化钨, 当TaxWO3中Ta/W摩尔比小于0.04时, 晶胞参数随着掺杂量的增大而逐渐增大, 当掺杂量达到大于0.04后保持基本不变。UV-Vis光谱表明, 随着钽掺杂量的增大, 紫外吸收峰发生红移, 即能隙逐渐减小。Raman光谱显示: 随钽掺杂量的增大, Raman峰位逐渐向低波数方向移动, 同时振动峰逐渐宽化, 进一步证明了钽掺杂对氧化钨结构的影响。光催化降解罗丹明B的实验显示, 制备的TaxWO3具有较高的光催化活性。  相似文献   

3.
研究了(Nd1-xLax)0.5Ca0.5MnO3(0≤x≤0.5)体系的X射线衍射谱,Raman吸收谱和电输运特性.通过电输运性质的测量给出了金属绝缘转变温度Tm与A位离子平均半径之间的关联.结果表明,La3 离子的掺杂压制低温下的电荷有序,导致金属绝缘转变开始出现,且随掺杂浓度的增加,金属绝缘转变(MI)温度(Tm)向高温区移动,对应的峰值电阻率ρp降低.X射线衍射谱和电输运特性均表明,La3 离子的掺入使得A位平均离子半径(〈rA〉)增大,导致局部晶格畸变减小.在掺杂量0.3≤x≤0.5的区域范围内,随着x的增加,双交换作用逐渐增强,有利于低温下铁磁态的形成.但热循环实验的研究结果表明,这种铁磁态属于亚稳态,在能量上反铁磁态比铁磁态更稳定.  相似文献   

4.
以TaCl5和Na2WO4为原料,采用水热法在170 ℃制备性能良好的掺钽钨青铜(Ta<i>xWO3)纳米线。利用X射线衍射技术(XRD)、扫描电镜(SEM)、紫外可见漫反射光谱(UV-Vis)及拉曼光谱(Raman)等分析手段,对该材料的结构、形貌及光谱性能进行表征。XRD结果表明:TaxWO3纳米材料为六方相结构氧化钨,当TaxWO3中Ta/W摩尔比小于0.04时,晶胞参数随着掺杂量的增大而逐渐增大,当掺杂量达到大于0.04后保持基本不变。UV-Vis光谱表明,随着钽掺杂量的增大,紫外吸收峰发生红移,即能隙逐渐减小。Raman光谱显示:随钽掺杂量的增大,Raman峰位逐渐向低波数方向移动,同时振动峰逐渐宽化,进一步证明了钽掺杂对氧化钨结构的影响。光催化降解罗丹明B的实验显示,制备的TaxWO3具有较高的光催化活性。  相似文献   

5.
二氧化铈(CeO2)具有储量丰富,价格低廉,催化性能优异等特性而得到广泛应用。通过在其晶格中掺杂其他离子制得CeO2固溶体,可以进一步调控CeO2的晶格大小,增加晶格缺陷浓度,从而有效提高催化性能。目前研究较多的掺杂离子多为金属阳离子,而对非金属阴离子掺杂的研究尚有待深入探索。本文以CO(NH2)2为N源,采用水热法合成不同N掺杂浓度的纳米CeO2-xNx固溶体(x=0.00,0.05,0.10,0.15,0.20),系统对固溶体的微观结构及光谱特征进行表征。X射线衍射(XRD)结果表明,所有掺杂浓度的CeO2-xNx固溶体均呈萤石立方单相结构。与纯CeO2相比,N含量为0.05时样品的晶胞参数显著增大,而随掺杂浓度的进一步增加,晶胞参数又呈现出逐渐减小的趋势。拉曼(Raman)测试表明,N掺杂样品的F2g振动模式峰向高波数移动,其原因是由于当N3-取代部分O2-后,Ce4+周围出现Ce—N键,Ce—N键长因静电引力变强而缩短,从而引起峰位的移动。通过紫外可见吸收光谱(UV-Vis)分析掺杂所引起样品电子跃迁状态的改变,发现N元素的掺杂使CeO2在可见光区域具有了吸光性能,CeO2-xNx固溶体的能隙明显减小,这是由于N(2p)与O(2p)的电子轨道发生交互作用而形成中间能级,使得电子跃迁所需能量降低,从而引起能隙的红移。荧光光谱(PL)测试表明,发射峰强度随N掺杂浓度的增大而增大,其原因一方面是由于N掺杂会引起晶格缺陷及氧空位比例的提升,发生带间跃迁的几率变大,进而提高发射峰的相对强度;另一方面,N的掺杂在价带O(2p)与导带Ce(4f)间形成中间能带,同样会导致发射峰变强。为表征纳米固溶体的催化特性,分别选取N掺杂量最小的CeO1.95N0.05与N掺杂量最高的CeO1.80N0.20以及纯CeO2作为典型催化剂,采用球磨法制备Mg2Ni/Ni/CeO2-xNx复合材料,系统分析了复合材料电极的储氢动力学性能。交流阻抗(EIS)测试发现,催化剂可以有效提高储氢合金的表面电荷转移活性,N掺杂量越高,CeO2基固溶体的催化活性越强;动电位极化曲线测试表明,掺杂催化剂也能显著提高H原子在合金内部的扩散速率,且CeO1.95N0.05较CeO1.80N0.20具有更好的催化活性。催化机理主要从催化剂的微观结构及光谱特征进行分析,如前所述,随着N含量的提高,CeO2固溶体晶格中的氧空位比例增大,晶格畸变程度提高,N的掺杂还使固溶体的电子跃迁能隙降低,从而有利于电子在合金表面的迁移;同时,纳米材料的晶粒尺寸越小,表明晶粒表面缺陷比例越大,说明催化剂的活性增强,因此表现为N掺杂浓度越高,复合材料电极交流阻抗弧半径的越小,即CeO1.80N0.20可以更加有效提高复合材料的表面活性;另一方面,若催化剂的晶胞体积增大,可使H原子在穿过材料表面的传输过程中具有更大的空间,由于CeO1.95N0.05的晶胞参数大于CeO1.80N0.20催化剂,故H原子通过催化剂进入合金内部的传输更加容易。H原子在合金内部的扩散速率与催化剂的晶胞参数或晶胞体积的大小密切相关。  相似文献   

6.
采用微乳液法合成Sr_xCa_(0.99-x)Eu_(0.01)WO_4(x=0.01,0.02,0.05,0.08,0.10,0.20,0.50,0.80,0.99)固溶体.使用TEM、XRD和Raman光谱表征固溶体的形貌和结构,采用荧光分光光度计测试固溶体的光致发光谱.实验结果表明:当Sr~(2+)掺杂摩尔分数从0.05增大到0.99时,固溶体开始由CaWO_4逐步转变为SrWO_4,其最大声子能量从912cm~(-1)单调增长到922cm~(-1).通过声子能量可调节掺杂Eu3+的非辐射跃迁速率,进而在直接激发和基质敏化条件下调控Eu~(3+)的发光特性.Sr~(2+)在Sr_xCa_(0.99-x)Eu_(0.01)WO_4固溶体中最佳的掺杂摩尔分数为0.05,较低的声子能量对Sr_xCa_(0.99-x)Eu_(0.01)WO_4固溶体在紫外激发下成为高效发光的荧光粉具有积极作用.  相似文献   

7.
采用溶胶-凝胶法制备了双稀土掺杂氧化铈Ce_(0.8)Pr_(0.2-x)Nd_xO_(2-δ)(x=0.02,0.05,0.1)固溶体。X射线衍射分析阐明,经800℃烧结的全部固溶体都形成了单相立方萤石结构,平均晶粒尺寸在20~25 nm之间。拉曼光谱结果阐明,固溶体Ce_(0.8)Pr_(0.2-x)Nd_xO_(2-δ)是具有氧空位的立方萤石结构,适量的掺杂Nd有利于Ce_(0.8)Pr_(0.2-x)Nd_xO_(2-δ)氧空位浓度的增加。阻抗谱结果阐明,稀土双掺杂的Ce_(0.8)Pr_(0.2-x)Nd_xO_(2-δ)比稀土单掺杂的Ce_(0.83)Sm_(0.17)O_(2-y)的电导率高,Ce_(0.8)Pr_(0.18)Nd_(0.02)O_(2-δ)的电导率最大,600℃时电导率为1.85×10~(-2)S/cm。  相似文献   

8.
采用固相烧结法,以Yb2O3、MoO3、Fe3O4为原料制备了Fe2-x Ybx Mo3O12(x=0,0.2,0.4,0.6,0.8,1,1.2,1.4,1.6,1.8,2)系列固溶体,并通过X射线衍射图样、Raman光谱、热分析以及膨胀系数测试对其结构、相变、吸水性及热膨胀性能进行了研究。结果表明Fe2-x Ybx Mo3O12当x≤0.4时是单斜相,当x≥0.6时是正交相,随着x值的增加Fe2-x Ybx Mo3O12材料的相变温度逐渐降低。Fe2-x Ybx Mo3O12含有的水分子可以分为两类,一类吸附在晶体表面对晶格振动没有影响,第二类进入晶体内部对晶格振动产生较大影响,导致负膨胀性质的消失,只有完全失去水分子后才表现负热膨胀性能。  相似文献   

9.
本文采用传统固相反应法制备多晶La_(0.5-x)Nd_xSr_(0.5)CoO_3(x=0,0.1,0.15)系列样品,通过测量其磁化强度与温度变化曲线(M~T)、磁化强度与外场变化曲线(M~H)、电子自旋共振谱(ESR)和电阻率与温度变化曲线(ρ~T)对样品的磁性和电输运性质进行了研究.结果表明:由于Nd~(3+)离子掺杂,使得系统中Co~(3+)和Co~(4+)离子之间的铁磁耦合增大,自旋与晶格的耦合作用增强,从而导致掺杂前后样品的磁性方面发生了改变:样品的铁磁转变温度TC和磁熵变值|ΔSM|均随掺杂量x的增加而增大,三个样品的TC分别为:190K、205K和233K,x=0.0样品在TC附近的相变为二级相变,x=0.1和x=0.15样品在TC附近的相变为一级相变.同样的,Nd~(3+)离子掺杂使得样品在电输运性质方面也发生了改变:由于Nd~(3+)离子掺杂,体系内Co离子的自旋态和无序性等均发生改变,从而使x=0.1样品中铁磁导电区域增大,尽管x=0.0和x=0.1样品均表现出绝缘体行为,但是随着掺杂量x的增加,电阻率大幅降低.  相似文献   

10.
通过溶胶凝胶法合成了Ce_xPd_(1-x)O_(2-δ)(x=1,0.7,0.5,0.3)系列纳米晶,X射线衍射(XRD)结果显示所得晶体为立方相。X射线光电子能谱(XPS)测试结果显示Pd的价态有Pd~(4+),Pd~(2+)及Pd0,其中Pd4+的出现说明形成了固溶体结构。结合高分辨透射电镜(HRTEM)、XRD和Raman光谱数据,发现掺杂物的物相中含有PdO。HRTEM谱图显示CeO_2表面分布有Pd单质,说明形成固溶体后高温导致晶格中的Pd析出。对系列化合物分别进行可见光拉曼谱(λ_(ex)=532nm)和紫外光拉曼谱(λ_(ex)=325nm)测试,并采用归一化法对比PdO的峰面积及CeO_2的峰面积,发现紫外光谱下CeO_2的F2g峰得到增强,同时还在593cm-1,1170cm-1,1750cm-1处出现三个峰,分别归为CeO_2本征纵向光学吸收LO(longitudinal optic),2LO和3LO,该现象由于共振拉曼效应导致的。结合紫外拉曼光谱,对不同比例Pd掺杂的CeO_2纳米晶中的氧缺位进行了量化研究。结果表明,随着Pd掺杂量的提高,氧缺位浓度逐渐增加,这与XPS测试结果的趋势基本一致。  相似文献   

11.
采用沉积沉淀法合成了系列La2O3改性的Au/CeO2催化剂,并结合紫外可见漫反射光谱,X射线粉末衍射和透射电镜对其进行相关表征。La的引入改变了载体的结构缺陷,导致了体系中金属Au与载体的相互作用发生了不同程度的变化。La2O3的掺杂有利于提高载体CeO2中氧缺位浓度,在一定范围内有利于活性的提高。继续提高掺杂量,使得缺陷浓度过高时可能形成缺陷簇,改变了缺陷性质,反而使活性相对下降。La掺杂量为5at%的Au/CL5.0样品表现出最佳的WGS活性,300℃时CO转化率达到94.12%。  相似文献   

12.
利用高温高压法首次合成了KNb1 -xTixO3-δ(x =0~ 0 .4)系列固溶体 ,并使用X射线衍射、TG DTA、Raman谱和交流阻抗谱等对样品的结构、热稳定性和导电性进行了表征。XRD结果表明 ,随掺杂量的增加 ,晶胞体积减小 ;Ti掺杂引起了固溶体结构的转变 ,x <0 .1 5的样品为正交钙钛矿结构 ,而x≥ 0 .1 5的样品几乎为纯四方相结构。Raman谱和DTA结果显示 ,Ti掺杂使四方相区宽化 ,并且随掺杂量的增加 ,相变温度逐渐下降。阻抗谱测量表明 ,所有样品均以离子导电为主 ,其中KNb0 .85Ti0 .1 5O2 .92 5的氧离子导电率最高 ,在 80 0℃时达到 5 .6× 1 0 - 3S·cm- 1 ,在测量温度范围内 ,电导率可以拟合成两条直线 ,低温活化能小于高温活化能  相似文献   

13.
掺杂是锂离子电池电极材料优化改性的一种有效的方法.稀土元素因其具有高的电子电荷、大的离子半径以及强的自极化能力,成为掺杂改性的重要选择.本文利用基于密度泛函理论的第一性原理方法研究了稀土元素(La, Ce, Pr, Sm)掺杂的锂离子电池正极材料Li_2MnO_3的性质.通过稀土元素的掺杂, Li_2MnO_3材料的晶格常数和晶胞体积都有不同程度的增大.由于稀土原子的价态不同,导致掺杂后的Li_2MnO_3的电子结构性质不同. La掺杂的Li_2MnO_3表现出金属性,而Ce, Pr, Sm掺杂的结构为半导体性质,但带隙与未掺杂情况下相比有所减小. Li_2MnO_3中的Li离子迁移在La和Ce掺杂后展示出复杂的能垒变化.在远离稀土离子处,Li离子迁移势垒比未掺杂时减小,但在靠近稀土离子处则表现为势垒变化的多样性.当Li离子在离稀土离子最近的位置处进行迁移,势垒有明显的增加,这一结果与稀土离子周围的局域结构变化大密切相关.  相似文献   

14.
本文采用基于密度泛函理论的第一性原理平面波超软赝势方法对Ti_3(Sn_xAl_(1-x))C_2(x=0,0.25,0.5,0.75,1)固溶体的晶格结构、结构稳定性、电子结构、力学和热学性质进行了系统的理论研究.研究结果表明:Ti_3(Sn_xAl_(1-x))C_2固溶体具有金属性,都是热力学和力学稳定的脆性材料;Sn原子掺杂能在一定程度上提高材料的力学性能,当Sn原子掺杂浓度为0.75时有最大的体积模量,而掺杂浓度为0.5时有最大剪切模量.此外,Ti_3(Sn_xAl_(1-x))C_2固溶体都具有较高的熔点和德拜温度,其中Ti_3AlC_2,Ti3(Sn_(0.25)Al_(0.75))C_2和Ti3(Sn_(0.5)Al_(0.5))C_2在室温下的晶格热导率均能达到40 W/(m·K)以上,是良好的导热性材料.  相似文献   

15.
采用溶胶凝胶法制备BiFeO_3和Bi_(0.95)La_(0.05)Fe_(1-x)Co_xO_3(x=0,0.05,0.1,0.15,0.2)样品.X衍射图谱表明所有样品的主衍射峰均与纯相BiFeO_3相吻合且具有良好的晶体结构,La和Co共掺杂的结果导致BiFeO_3的晶胞体积增大.SEM形貌分析可知,晶粒尺寸随着掺杂量的增加而逐渐减小,晶粒由原来的10um逐渐减小到1um,且其晶粒形状有不规则状逐渐呈现四方状.Bi_(0.95)La_(0.05)Fe_(1-x)Co_xO_3样品介电常数和介电损耗随着掺杂量的增加先增大而后减小.当f=1kHz,Bi_(0.95)La_(0.05)FeO_3的介电常数是BiFeO_3的5.96倍.其介电特性是由偶极子的取向极化和空间电荷限制电流两种极化机制共同作用的结果.La~(3+)和Co~(3+)掺杂使BiFeO_3晶胞体积增大、晶格结构发生扭曲形变,导致BiFeO_3的Fe-O-Fe健的健角增大,改变Fe-O健健长,进一步提高了BiFeO_2样品的铁磁性.  相似文献   

16.
采用水热法制备纳米Ce_(0.95)M_(0.05)O_2(M=Fe~(3+),Nd~(3+),Eu~(3+))固溶体,系统研究了固溶体的微观晶体结构及光谱特性。X射线衍射(XRD)结果表明,掺杂样品均为单相萤石立方结构,无对应于掺杂离子氧化物的杂相存在,说明三种掺杂离子均成功掺入CeO_2晶格内而形成固溶体。计算各样品的晶粒尺寸,得到掺杂固溶体的粒度均低于20 nm。采用紫外可见光谱(UV-Vis)表征固溶体的电子跃迁性能。与纯CeO_2相比,掺杂固溶体的吸收边均发生红移;同时,拟合得到各样品能隙由大到小依次为:CeO_2(3.13 eV)Ce_(0.95)Eu_(0.05)O_2(3.04 eV)Ce_(0.95)Nd_(0.05)O_2(2.94 eV)Ce_(0.95)Fe_(0.05)O_2(2.75 eV)。荧光光谱(PL)测试表明,掺杂样品的发射峰强度均比纯CeO_2低,其中Fe~(3+)掺杂固溶体样品的荧光强度降低最为明显。其原因在于Fe~(3+)掺杂会使固溶体晶格内引入更多缺陷,从而阻碍了电子与空穴的复合。将固溶体作为催化剂添加到Mg_2Ni-Ni中,球磨制得Mg_2Ni-Ni-5%Ce_(0.95)M_(0.05)O_2复合材料,系统测试复合材料电极的电化学和动力学储氢性能。结果表明, Ce_(0.95)M_(0.05)O_2固溶体可有效提高Mg_2Ni-Ni合金复合材料的电化学放电性能,最大放电容量分别为:Ce_(0.95)Fe_(0.05)O_2(874.8 mAh·g~(-1))Ce_(0.95)Nd_(0.05)O_2(827.8 mAh·g~(-1))Ce_(0.95)Eu_(0.05)O_2(822.7 mAh·g~(-1))CeO_2(764.9 mAh·g~(-1))。同时,催化剂还可有效提高复合材料的电化学循环稳定性,经20次循环后的容量保持率为:Ce_(0.95)Fe_(0.05)O_2(49.8%)Ce_(0.95)Eu_(0.05)O_2(49.7%)Ce_(0.95)Nd_(0.05)O_2(46.3%)CeO_2(34.1%)。对复合材料进行高倍率放电性能(HRD)表征,掺杂固溶体催化剂能够显著提高样品的大电流放电性能,如当放电电流密度为200 mAh·g~(-1)时,各样品的HRD为:Ce_(0.95)Fe_(0.05)O_2(59.5%)Ce_(0.95)Eu_(0.05)O_2(57.4%)Ce_(0.95)Nd_(0.05)O_2(55.7%)CeO_2(54.4%)。采用恒电位阶跃测试催化剂对复合材料中H扩散能力的影响, H扩散系数由大到小依次为Ce_(0.95)Fe_(0.05)O_2Ce_(0.95)Eu_(0.05)O_2Ce_(0.95)Nd_(0.05)O_2CeO_2。分析认为,固溶体的催化效果与其氧空位浓度、晶格缺陷及掺杂离子易变价特性密切相关。  相似文献   

17.
采用高温高压法制备了KNb1-xMgxO3 -δ(x =0 .0~ 0 .3)氧离子导电材料 ,使用XRD、TG-DTA及交流复阻抗谱对样品的结构和离子导电性进行了表征。实验结果表明 ,高压降低了合成温度 ,合成的KNb1-xMgxO3 -δ系列固溶体与其母体KNbO3 一样都为正交钙钛矿结构 ,晶胞参数随掺杂量的增加而略微增大。固溶体KNb1-xMgxO3 -δ具有离子导电特征 ,通过拟合阻抗谱数据获得了该材料晶粒电导、晶界电导和体电导率与温度的关系。样品的晶界电阻较高 ,晶界效应十分明显 ,离子跳跃传导可能在其输运机制中占据主导地位。在x =0 .1附近 ,电导率达到最大值 ,70 0℃时为 1.2× 10 - 3 S·cm- 1。  相似文献   

18.
我们采用传统固相反应法成功制备了系列多晶样品Bi_(1.6)Pb_(0.4)Sr_(2-x)(Ce_(1-y)Eu_y)_xCuO_z(x=0.1,0.2;0≤y≤1),并且用XRD和电阻率分别对其晶体结构和输运性质进行了研究.XRD结果表明,当Ce/Eu共掺杂量x=0.1时,样品成单相,当x=0.2时,会有杂相出现;随着Eu掺杂量的增加及相应Ce掺杂量的减少,样品的晶胞参数a,b稍有增大,晶胞参数c则显著增大;电阻率测量表明,随着Eu掺杂量的增加,样品的超导转变温度Tocnset可以提高到21K,Ce掺杂对超导电性有一定的抑制作用,而Eu掺杂却能够改善超导电性,其中Tconset随Ce/Eu掺杂量的变化可以用电荷转移模型进行合理解释.  相似文献   

19.
郝志红  王海英  张荃  莫兆军 《物理学报》2018,67(24):247502-247502
EuTi0_3是直接带隙半导体材料,在液氦温度附近呈现反铁磁性,且具有较大的磁熵变,但是当其转变为铁磁性时,可以有效提高低磁场下的磁熵变.本文通过元素替代,研究晶格常数的变化和电子掺杂对磁性和磁热效应的影响.实验采用溶胶凝胶法制备EuTiO_3和Eu_(0.9)M_(0.1)TiO_3 (M=Ca, Sr, Ba, La, Ce, Sm)系列样品.结果表明:大离子半径的碱土金属离子替代提高了铁磁性耦合,有利于提高低磁场下的磁热效应.电子掺杂可以抑制其反铁磁性耦合从而使其表现为铁磁性.当大离子半径的稀土La和Ce离子替代Eu离子时,既增大了晶格常数也实现了电子掺杂,表现出较强的铁磁性.在1 T的磁场变化下,Eu_(0.9)La_(0.1)TiO_3和Eu_(0.9)Ce_(0.1)TiO_3的最大磁熵变分别为10.8和11 J/(kg·K),均大于EuTi0_3的9.8 J/(kg·K);制冷能力分别为39.3和51.8 J/kg,相对于EuTi0_3也有所提高.  相似文献   

20.
采用机械合金化法制备了一系列的Nb_3Al_(1-x)Si_x(x=0~0.2)多晶样品,利用高能球磨机获得Nb(Al,Si)固溶体,然后在900℃的温度下烧结将固溶体转变为超导相.XRD测试结果表明,经3小时高能球磨后Al和Si固溶到Nb中形成Nb(Al,Si)固溶体,烧结后的样品具有较好的单相性,为A15型晶体结构,并且晶格随掺杂量的增加逐渐减小.磁性测量结果表明,纯样Nb3Al的Tc约为14K,随掺Si量的增加Tc逐渐减小.结合EDX分析,所有Nb_3Al_(1-x)Si_x样品的超导电性来源于A15相,但由于随掺杂量的增加样品中Al的含量逐渐减少导致了Tc逐渐减小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号