首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
壳聚糖及其衍生物在生物医药中的研究进展   总被引:2,自引:0,他引:2  
壳聚糖是一种用途很广的天然高分子化合物,具有无毒、生物相容性、吸附功能、生物可降解性及多种生物学活性等优异性能。本文综述了壳聚糖及其衍生物作为药物载体材料、组织工程材料、医用敷料和抗菌材料的应用,并且其在抗肿瘤方面也有一定的疗效。  相似文献   

2.
壳聚糖具有广谱抗菌性、生物相容性、生物可降解性、无毒性、无免疫原性等性能,在医用材料、口腔医学及中药制剂领域均具有良好的应用前景,且随着对壳聚糖及其衍生物研究的不断深入,改性后的衍生物不断开发,将有更多符合医药用标准的新型材料得到广泛应用,进一步推动医药学的发展。本文对壳聚糖的制备方法、特点及其在医用材料、口腔医学和中药制剂等领域的应用进行综述,为扩大壳聚糖在医药领域的应用范围提供依据。  相似文献   

3.
壳聚糖基生物医用材料及其应用研究进展   总被引:18,自引:0,他引:18  
壳聚糖是一种极具发展潜力的天然生物材料,其在生物医学领域的研究和应用越来越受到重视。阐述了壳聚糖及其衍生物作为生物医用材料的特性,介绍了壳聚糖基生物医用材料的应用现状和发展趋势。  相似文献   

4.
壳聚糖作为广泛存在于天然界中的天然高分子聚合物甲壳素的脱乙酰化产物,不仅具有良好的生物相容性、生物降解性、低毒性、成膜性等性质,还具有止痛止血、抗菌消炎、缓释药物等生物活性.壳聚糖及其衍生物已被广泛应用于医药领域,并逐渐成为制备皮肤创伤敷料膜的首选材料.本文结合壳聚糖的结构特征,以及用于治疗皮肤创伤的相关性能,综述了利用壳聚糖及其衍生物制备性能优异的皮肤创伤敷料膜的研究进展,并在此基础上对其应用前景做出了展望.  相似文献   

5.
生物高分子聚苹果酸及其衍生物的合成与应用前景   总被引:2,自引:0,他引:2  
生物高分子对生命过程十分重要,它们表现出了卓越的特性和潜在的应用前景,因而一直是国内外学者的一个新的研究热点。聚苹果酸及其衍生物作为一类新型的生物高分子同样具有一些独特的性质。本文介绍了聚苹果酸及其衍生物的结构和性能特点,全面综述了它们的合成与制备方法研究的进展,展示了它们作为生物医用材料在药物释放体系、组织工程等领域中的应用前景。  相似文献   

6.
壳聚糖及其衍生物的抗菌活性和优良加工性能,使其成为具有巨大潜力的抗菌材料,可用于食品保鲜、伤口敷料和组织工程等方面。本文综述了近年来在壳聚糖基材料抗菌模型、影响抗菌活性因素及抗菌活性优化方案方面的研究进展,希望对壳聚糖衍生物抗菌材料的制备及优化提供参考。  相似文献   

7.
壳聚糖及其衍生物在农业上的应用   总被引:3,自引:0,他引:3  
壳聚糖是一种具有许多优良的特性且来源丰富的可再生绿色高分子材料.本文简要介绍了近几年来应用化学、物理和酶催化三种方法对壳聚糖的改性.同时介绍了壳聚糖及其衍生物作为生物调节剂、农药、化肥和果蔬保鲜剂等在农业上应用的研究进展.  相似文献   

8.
甲基丙烯酰胺基明胶(GelMA)水凝胶的制备及其在生物医学领域的应用是最近十几年的研究热点。GelMA水凝胶因其独特的光致交联特性,可以加工成不同形貌的水凝胶支架材料,同时,因其具有可控的力学性能、降解性能,以及优秀的生物相容性,已成为具有广泛应用前景的生物高分子聚合物材料。本文主要介绍了GelMA水凝胶在止血材料、创伤敷料、组织工程支架、药物控释、骨缺损修复等领域的研究进展。  相似文献   

9.
朱爱萍  吴钧  张娜  沈健 《化学通报》2002,65(1):W003
作为一种生物相容及生物可降解的天然高分子化合物,人们对壳聚糖在生物材料领域应用潜力的认识日益深刻,应用的开发日益增强.本文通过对壳聚糖与生物材料相关特性的分析,根据目前的研究成果,指出壳聚糖是一种很有潜力的组织工程支架材料.  相似文献   

10.
本文在可降解型聚氨酯分子设计,聚氨酯型组织工程支架制备方法,可降解聚氨酯多孔支架的生物学性能及可降解聚氨酯多孔支架在组织工程中的应用等几个方面对可降解聚氨酯型组织工程支架的最新研究进展作了综述。重点讨论了静电纺丝、冷冻干燥、相分离等几种聚氨酯多孔支架制备方法以及聚氨酯型组织工程支架的生物降解性质、生长因子嵌入、生物力学性能、生物相容性等生物学性能。目前的研究表明通过聚氨酯分子设计与各种支架制备方法结合可制得满足各种生物学性能的支架材料且这类材料已被证实在血管、软骨、硬质骨等各类组织工程中有重要的应用价值。但如何进一步提高聚氨酯支架材料的力学强度以使其能更好地与硬组织的力学性能相匹配以及如何降低或消除聚氨酯对人体的毒性仍是需要进一步研究的问题。  相似文献   

11.
郭伟  蔡照胜  许琦 《化学通报》2019,82(4):299-309
壳聚糖是由甲壳素通过脱乙酰作用得到的一种天然高分子多糖,具有良好的生物相容性、抗菌性、无毒和可生物降解等优点,但壳聚糖水溶性差限制了其在很多方面的应用。为克服壳聚糖在水溶性上的不足,利用壳聚糖结构中氨基和羟基上的活泼氢进行化学改性以引进羟烷基等亲水性基团成为重要手段。本文主要对壳聚糖羟烷基化改性的方法及羟烷基壳聚糖在医药、水处理和组织工程材料等领域的研究和应用现状进行介绍,并对羟烷基壳聚糖未来的发展趋势进行了展望。  相似文献   

12.
聚乳酸/肝素缓释微囊复合材料组织相容性研究   总被引:2,自引:0,他引:2  
研究了三种不同包覆材料的肝素微胶囊/聚乳酸(PLA)复合材料的组织相容性。结果表明,随着胶囊中壳聚糖浓度的增大,肝素的释放速率变慢。皮肤刺激、皮内刺激、热原、全身急性毒性和细胞培养等试验表明,制备的复合材料在生物学评价试验中均呈阴性反应,材料无明显毒性,材料中不存在潜在致敏性物质,所含热原含量符合生物体的要求。由此表明,肝素缓释微胶囊/PLA复合材料符合三维多孔材料的要求,且具有优良的组织相容性。  相似文献   

13.
组织工程相关壳聚糖-明胶基生物材料   总被引:17,自引:5,他引:12  
组织工程相关壳聚糖-明胶基生物材料;表面修饰剂;综述  相似文献   

14.
组织工程用水凝胶材料   总被引:17,自引:0,他引:17  
综述了目前用于组织工程支架材料的水凝胶,包括胶原和明胶、透明质酸盐、海藻酸盐,琼脂糖和壳聚糖等天然水凝胶,聚丙烯酸及其衍生物、聚氧化乙烯及其衍生共聚物、聚乙烯醇、聚磷腈和合成多肽等合成水凝胶,并介绍了可注射性组织工程水凝胶。  相似文献   

15.
骨在组织工程中得到了非常广泛、深入的研究.支架材料与许多可降解材料一起也在进行探索性研究.用于骨组织工程的生物材料可以是三维多孔的刚硬材料,也可以是可注射材料.本文从聚合物角度综述了骨组织工程对支架材料的基本要求,用于骨组织工程的可降解生物材料、支架材料的设计和制备技术以及支架材料的表面修饰等方面的研究进展.  相似文献   

16.
Owing to the special fo rmation of photopolymerized hydrogels,they can effectively control the formation of hydrogels in space and time.Moreover,the photopolymerized hydrogels have mild formation conditions and biocompatibility;therefore,they can be widely used in tissue engineering.With the development and application of manufacturing technology,photopolymerized hydrogels can be widely used in cell encapsulation,scaffold materials,and other tissue engineering fields through more elaborate manufacturing methods.This review covers the types of photoinitiators,manu facturing technologies for photopolymerized hydrogels as well as the materials used,and a summary of the applications of photopolymerized hydrogels in tissue engineering.  相似文献   

17.
This article reviews various methods of synthesizing polycondensation and ring-opening polymerization and modifying properties of polylactic acid (PLA), which may be used as biomaterials, such as a drug carrier in a drug delivery system, as a cell scaffold and suture in tissue engineering, and as packaging materials in packaging engineering field. Copolymerization of lactide with other monomers or polymers such as malic acid, polyethylene glycol (PEG), polyglycolic acid (PGA), or dextran, as well as blending polylactide with natural derivatives and other methods of modification are discussed. Surface modifications of PLA-type copolymers, such as surface coating, chemical modification, and plasma treatment are described.  相似文献   

18.
The persistent failure of conventional materials used in manufacturing orthopedic implants was due to the deficiency or poor integrations of implant materials to the juxtaposed bone and stress-strain imbalances between the interfaces of tissues and implant materials. Therefore, the fabrication of a suitable bioactive scaffold for bone tissue engineering is considered a vital requisite to mimic the extracellular bone matrix. Numerous researches were reported concerning the fabrication of a suitable bioactive scaffold to improve cell adhesion, proliferation, and differentiation so far. However, for the past two decades, the research on carbon nanotubes (CNTs)-reinforced composites employed in the biomedical field is increasing day-by-day because of its outstanding properties. Moreover, it is essential to choose a biocompatible polymer with greater affinity to act as an extracellular matrix as well as to attract CNTs and in facilitating the homogeneous distribution of CNTs in aqueous and organic solvents. The development of CNTs-based composites in bone tissue engineering is presented in this review based on the last 10 years of research. The detailed information about the structural-functions and defects of bone, and the importance of CNTs-functionalized natural and synthetic polymers, and their potential activity in bone regenerations and bone replacements have been reviewed.  相似文献   

19.
Over the past decade, the use of polysaccharides has gained tremendous attention in the field of medical technology. They have been applied in various sectors such as tissue engineering, drug delivery system, face mask, and bio-sensing. This review article provides an overview and background of polysaccharides for biomedical uses. Different types of polysaccharides, for example, cellulose and its derivatives, chitin and chitosan, hyaluronic acid, alginate, and pectin are presented. They are fabricated in various forms such as hydrogels, nanoparticles, membranes, and as porous mediums. Successful development and improvement of polysaccharide-based materials will effectively help users to enhance their quality of personal health, decrease cost, and eventually increase the quality of life with respect to sustainability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号