首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
麝香酮是麝香中重要的具有生理活性的组分.自Ruzicka[1]确定其结构以来,化学家研究和发展了许多合成麝香酮的方法[2].Stoll[3]提出的由2,15-十六二酮经分子内环合后氢化得到麝香酮,其操作简便,但尚需解决2,15-十六二酮的来源问题.5,6,7,8-四氢叶酸辅酶在生物体内的功能和作用及仿生合成已成为仿生化学研究的重要课题[4].四氢叶酸辅酶在生物体内传递不同氧化态的-碳单元,当-碳单元处于甲酸氧化态时,活性部位是形成的咪唑啉环[5,6].因此,本文以咪唑啉盐作为四氢叶酸辅酶模型,与亲核试剂双格利雅试剂作用,仿生合成2,15-十六二酮.  相似文献   

2.
针对4-氨基-8-去氮杂四氢叶酸二乙酯现有合成方法中化合物极性大、溶解度差、收率低的缺点,采用在2,4位氨基引入保护基的方法进行改进。以6-乙酰氧基-2,4-二氯吡啶并[3,2-d]嘧啶为原料,在2,4-位引入苄基后与对氨基苯甲酰谷氨酸二乙酯连接,经硼氢化钠和氯化镍还原后再脱保护,生成叶酸类抑制剂关键中间体4-氨基-8-去氮杂四氢叶酸二乙酯。此方法所需时间短,收率较高,操作及后处理方便。并对6-乙酰氧基-2,4-二氯吡啶并[3,2-d]嘧啶苄基化的选择性、硼氢化钠和氯化镍还原方法进行了讨论。此方法对于四氢叶酸类化合物的合成有重要参考意义。  相似文献   

3.
HOU Na  LI Ying  WU Di  LI Zhi-Ru 《物理化学学报》2014,30(7):1223-1229
采用密度泛函理论B3LYP方法得到了M@t-Bu-calix[4]arene和(M@t-Bu-calix[4]arene)Li′(M=Li,Na,K)体系的几何结构.其中(M@t-Bu-calix[4]arene)Li′(M=Li,Na,K)三个体系各有5个稳定异构体,在前三个异构体中,碱金属与t-Bu-calix[4]arene分子间具有很强的相互作用能,说明了体系的稳定性.在部分(M@t-Bucalix[4]arene)Li异构体中Li′原子以阴离子形式存在,整个体系表现出碱金属化物的特性.此外,使用CAMB3LYP方法计算了t-Bu-calix[4]arene及碱金属掺杂后体系的非线性光学性质.结果表明,t-Bu-calix[4]arene内部掺杂一个碱金属原子M后,体系的一阶超极化率(β0)有较大提高,而在配体外部又掺杂一个Li原子后,体系具有更大的β0值.其中(M@t-Bu-calix[4]arene)Li′体系的MLi′-4异构体表现出最高的β0值(41827-114354 a.u.),并且随着M原子序数的增加而逐渐增大.可见,碱金属掺杂是提高t-Bu-calix[4]arene非线性光学响应的一种有效策略.  相似文献   

4.
酶催化的一碳单元转移反应在生物合成和代谢过程中具有重要的作用 ,并与抗癌药物设计和合成密切相关 .虽然催化不同一碳单元转移反应的酶不同 ,但大多数酶需要四氢叶酸作辅酶 .四氢叶酸辅酶传递一碳单元的化学与其N5,N1 0的ΔpKa 密切相关 ,而与嘧啶环及谷氨酸残基部分无关 ,后两部分的作用是把辅酶结合在适当的酶蛋白表面上[1 ] .当可转移的碳处于甲酸态时 ,四氢叶酸辅酶以衍生物 5,1 0 CH+ THF(1 )的形式存在 ,其中可转移的碳与N5,N1 0相连形成五元环 ,是反应的活性中心 .由于酶反应体系的复杂性 ,在实验和理论研究中大多建…  相似文献   

5.
光学纯的环氧化物是合成许多药物和天然产物的重要中间体并构成不对称碳碳键的重要合成子 ,因此寻找不对称环氧化反应体系总是有机化学研究的重点和热点[1~ 3 ] .从 Sharpless[4 ] 到 Jacobsen[5] 的手性金属配合物催化体系 ,到杨丹 [6] 和施以安[7] 的手性有机酮催化体系 ,都取得了突破性的进展 ,并在天然产物、药物合成中得到了应用 [1,2 ,8] .但这些体系都有其局限性 ,每一类体系只能适用于某一类烯烃 ,因此开拓适用性更广的不对称环氧化催化剂 ,仍然是对有机化学工作者的挑战 .近年来 ,一种新的体系 ,即用手性亚胺盐或者手性亚胺盐氧…  相似文献   

6.
侯娜  李莹  吴迪  李志儒 《物理化学学报》2001,30(7):1223-1229
采用密度泛函理论B3LYP方法得到了M@t-Bu-calix[4]arene和(M@t-Bu-calix[4]arene)Li'(M=Li,Na,K)体系的几何结构. 其中(M@t-Bu-calix[4]arene)Li'(M=Li,Na,K)三个体系各有5个稳定异构体,在前三个异构体中,碱金属与t-Bu-calix[4]arene分子间具有很强的相互作用能,说明了体系的稳定性. 在部分(M@t-Bucalix[4]arene)Li异构体中Li'原子以阴离子形式存在,整个体系表现出碱金属化物的特性. 此外,使用CAMB3LYP方法计算了t-Bu-calix[4]arene及碱金属掺杂后体系的非线性光学性质. 结果表明,t-Bu-calix[4]arene内部掺杂一个碱金属原子M后,体系的一阶超极化率(β0)有较大提高,而在配体外部又掺杂一个Li原子后,体系具有更大的β0值. 其中(M@t-Bu-calix[4]arene)Li'体系的MLi'-4异构体表现出最高的β0值(41827-114354 a.u.),并且随着M原子序数的增加而逐渐增大. 可见,碱金属掺杂是提高t-Bu-calix[4]arene非线性光学响应的一种有效策略.  相似文献   

7.
电流滴定法对自组装膜表面酸碱性的研究   总被引:2,自引:0,他引:2  
近年来 ,有序分子自组装体系在基础研究和应用领域均得到了较大的发展 .选择末端可以解离的自组装分子而制成的自组装膜 ,可以方便地通过调节底液的 p H值来控制膜体系的荷电状况 [1] ,这在利用静电作用吸附蛋白质 [2 ] 、多肽 [3] 、 DNA[4 ] 、聚电解质 [5] 、金属离子及其它物种 [6] 等方面具有重要作用 .精确测定表面解离常数 (即表面 p Ka)和控制自组装膜表面的荷电状况 ,无疑在理论研究和实践中均占有重要地位 .目前 ,一些方法如接触角滴定 [7] 、微分界面电容 [8] 、电流滴定法 [9,10 ] 以及 AFM的力曲线滴定 [11,12 ]被用于表面…  相似文献   

8.
采用DFT,QCISD及CCSD(T)方法分别对二重态的[Si,C,S] 和[Si,C,S]-体系势能面进行理论计算,用QCISD/6-311 G(d)方法,在[Si,C,S] 和[Si,C,S]-体系中,我们分别得到了2个过渡态连接的3个稳定体和2个过渡态连接的4个稳定体,经热力学及动力学分析发现,[Si,C,S] 上体系只有二重态线性的离子[Si-C-S] 可能稳定存在,而[Si,C,S]-体系有二重态线性的离子[Si-C-S]-和三元环c-[SiCS]-可能稳定存在.  相似文献   

9.
采用DFT, QCISD及CCSD(T)方法分别对二重态的[Si, C, S]+和[Si, C, S]-体系势能面进行理论计算, 用QCISD/6-311+G(d)方法, 在[Si, C, S]+和[Si, C, S]-体系中, 我们分别得到了2个过渡态连接的3个稳定体和2个过渡态连接的4个稳定体, 经热力学及动力学分析发现, [Si, C, S]+体系只有二重态线性的离子[Si—C—S]+可能稳定存在, 而[Si, C, S]-体系有二重态线性的离子[Si—C—S]-和三元环c-[SiCS]-可能稳定存在.  相似文献   

10.
十二烷基苯磺酸钠扩散系数的电化学测定   总被引:3,自引:2,他引:1  
表面活性剂水溶液体系胶束扩散系数的测定是研究表面活性剂水溶液体系性质的重要方法之一。胶束扩散系数的测定已有准弹性光散射[1]、小角X-射线散射[2]、扩散-粘度[3]、极谱法[4]、循环伏安[5]等方法报导。但有关十二烷基苯磺酸钠(sod ium dodecy benzene sulfonate,SDBS)水溶  相似文献   

11.
自 1 95 9年 Smidt等 [1]发现均相 Pd Cl2 - Cu Cl2 体系可高效率直接选择性氧化乙烯制乙醛以来 ,Wacker催化过程已成为乙醛工业生产的主要方法 .为解决 Wacker催化体系腐蚀性强及催化体系与产物难以分离等弊端 ,将均相 Wacker(Pd Cl2 - Cu Cl2 )催化剂固载化成为备受关注的研究课题[2 ] .多相Wacker催化剂不仅成功地应用于选择性氧化低碳烯烃制醛和酮 [3 ,4 ] ,还用于 CO深度氧化 [5~ 7] .碳酸二甲酯 (DMC)的合成与应用研究是目前绿色化学前沿课题 .在众多的 DMC合成方法中 ,常压气相法因其工艺简单、对设备无腐蚀以及产品易分离…  相似文献   

12.
近年来萘酰亚胺类化合物作为超分子体系中的功能单元逐渐引起了人们的重视,如快速响应的光开关体系[1]、生物荧光探针体系[2]、激光染料天线分子[3]等.  相似文献   

13.
近年来 ,化学反应的奇异现象[1~ 3] 如振荡、混沌、时空图案等激起了化学家的极大兴趣 ,非线性反应机理不仅是重要的研究方向之一 ,而且是复杂现象研究的基础 .Orbán发现的 H2 O2 -SCN- -OH- -Cu2 + 反应体系呈现闭系、开系振荡和周期性化学发光现象[4~ 6 ] .我们发现体系也呈现复杂振荡、双节律、两种不同型的 p H振荡[7,8] 和无铜催化振荡[9] ,为此提出双振荡反应机理 ;Cu2 + 在封闭体系振荡和开系复杂振荡中是必不可少的一个成分 ,它在此非线性反应体系中的地位及影响需要进一步深入研究 ,以解释出现的各类复杂动力学现象 .本文…  相似文献   

14.
异丁烷脱氢催化剂V-O-Al水热-流体干燥法合成   总被引:2,自引:0,他引:2  
负载型 V2 O5催化剂被广泛应用于烃的氧化、低碳烃的氧化脱氢及 NOx的 NH3 还原等催化反应[1~ 3 ] .对于低碳烃脱氢 ,Cr2 O3 和 Pt体系研究较多 ,而 V2 O5体系则鲜有报道[4 ,5] .水热合成方法是合成各种分子筛的常用方法 ,同时也被广泛用于合成多种无机功能材料 (如纳米材料 ,  相似文献   

15.
采用密度泛函理论的M06-2X/6-31G(d, p)方法对杯[4]吡咯(CP)与卤素离子(X-=F-, Cl-, Br-)及卤素-铵根离子对的各种可能组装体系进行了系统研究. 详细讨论了各体系的结构、结合能、自然键轨道分析(NBO)和Multiwfn波函数分析的情况. 结果显示杯[4]吡咯与卤素阴离子的相互作用主要是氢键, 波函数分析显示在CPCl-和CP-Br-复合物中长程范德华力和空间位阻作用也明显存在. 杯[4]吡咯能与卤素-铵根离子形成稳定的复合物, 主要通过氢键作用、阴-阳离子的静电作用以及阳离子-π相互作用.从理论上探讨了杯[4]吡咯与离子或离子对的2:1组装体系,但相对于1:1组装体系来讲, 2:1体系并不占优势.本文结果进一步表明, 杯[4]吡咯不仅是一种阴离子受体,而且也是一种良好的离子对受体,尤其是对涉及氟离子的客体,更是如此.  相似文献   

16.
对硝基杯[8]芳烃的合成及其与奥克托今的配合   总被引:1,自引:0,他引:1  
以对叔丁基苯酚与多聚甲醛为原料合成了对硝基杯[8]芳烃.利用紫外光谱研究了对硝基杯[8]芳烃与奥克托今(HMX)在氯仿中的配合性能.用量子化学半经验AM1和ab initio HF/3-21G方法,分别得到主、客体及其超分子体系几何全优化结构.结果表明,主客体分子形成了1: 1的配合物,标准状况下对硝基杯[8]芳烃与HMX形成超分子体系后较单体能量之和减少60.76 kJ/mol,主客体间可形成氢键.对硝基杯[8]芳烃与HMX超分子体系的稳定常数Kw从288 K的1.138×1012降至408 K时的1.121×105.  相似文献   

17.
研究了高锰酸钾氧化叶酸荧光体系的形成条件,并建立了测定叶酸含量的间接荧光法。在pH为4.0,80℃水浴中,高锰酸钾可将叶酸氧化为蝶呤-6-羧酸,氧化产物的荧光值较叶酸的荧光值大大增强。荧光强度与叶酸浓度在0~1.6 mg.L-1范围内呈线性关系,方法的检出限为51μg.L-1,将此方法应用到孕妇强化奶粉中叶酸含量的测定,RSD为2.52%(n=6)。  相似文献   

18.
[2]-轮烷是由大环与分子链组成的两组分超分子体系,计算评估大环和链之间的结合强度,对于理解超分子识别和超分子体系可控设计尤为重要.本文借鉴计算机图像处理技术,通过全局阈值分割方法将大环和链的静电势图像分成两个片段,两者的静电势差值近似为[2]-轮烷体系的结合能.该计算方法可以直观简便地预测超分子体系的结合能.基于静电势的图像阈值分割方法计算的结合能定性符合实验测定的结合常数和密度泛函理论(DFT)计算的结合能.对于不同分子链和大环分子组成的多种[2]-轮烷体系的对比研究表明,大环与链的结合强度与结合位点的给质子能力、形成氢键的数目、大环的尺寸以及大环与链之间?-?堆积作用相关.  相似文献   

19.
乙烯 (E) /乙烯醇 (V)共聚物 (EVOH)为结晶性高聚物 ,作为膜材料有着广泛的用途 .在该体系中 ,不仅存在复杂的化学和物理结构 ,如序列分布、立构规整性和共晶结构 ,还存在复杂的氢键相互作用 ,是研究化学结构、聚集态结构和氢键相互作用之间关系的代表性体系 .通过DSC[1 ] 、X 射线衍射[2 ] 、固体高分辨核磁共振碳谱 (1 3C CP/MAS NMR) [3~ 7] 等不同的研究方法 ,前人对EVOH体系及与之直接相关的乙烯醇均聚物(PVA)的熔融温度、结晶度以及结晶结构等问题进行了大量研究 .1 984年Terao等[6] 首先报道了在固…  相似文献   

20.
咖啡因属生物碱,是中枢神经兴奋药物之一~[1]。目前,咖啡因的常用测定方法有紫外分光光度法~[2]和高效液相色谱法~[3]等.电化学测定方法已有报道~[4~6],但尚未见到利用Nafion聚合物涂层碳纤维微电极的伏安测定方法.本文提出了一种简单易行的碳纤维微电极及其Nafion聚合物涂层的制造方法.得到了利用该电极微分脉冲伏安法测定咖啡因的最佳体系为  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号