首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
对称次反对称矩阵的一类反问题   总被引:10,自引:1,他引:9  
1 引言 用R~(m×n),SR~(n×n),ASR~(n×n),OR~(n×n)分别表示所有m×n实矩阵,n阶实对称矩阵,n阶实反对称矩阵和n阶实正交矩阵组成的集合,I_k表示k阶单位矩阵,S_k表示k阶反序单位矩阵,||A||表示矩阵A的Frobenius范数。若A=(a_(ij))∈R~(n×n),记D_A=diag(a_(11),a_(22),…,a_(nn)),L_A=(l_(ij))∈R_(n×n)其中当i>j时,l_(ij)=a_(ij),当i≤j时,l_(ij)=0,(i,j=1,2,…,n).若A=(a_(ij)),B=(b_(ij))∈R~(m×n),A*B表示A与B的Hadamard乘积,其定义为A*B=(a_(ij)b_(ij))。  相似文献   

2.
线性流形上对称正交对称矩阵逆特征值问题   总被引:2,自引:0,他引:2  
周富照  胡锡炎  张磊 《计算数学》2003,25(3):281-292
1.引言 令R~(n×m)表示所有n×m阶实矩阵集合;OR~(n×n)表示所有n阶正交矩阵全体;A~+表示A的Moore-penrose广义逆;I_к表示К阶单位阵;SR~(n×n)表示n阶实对称矩阵的全体;rank(A)表示A的秩;||·||是矩阵的Frobenius范数;对A=(a_(ij)),B=(b_(ij))∈R~(n×m),A*B表示A与B的Hadamard乘积,其定义为A*B=(a_(ij),b_(ij))。  相似文献   

3.
1引言令R~(n×m)、OR~(n×n)、SR~(n×n)(SR_0~(n×n))分别表示所有n×m阶实矩阵、n阶实正交阵、n阶实对称矩阵(实对称半正定阵)的全体,A~ 表示A的Moore-Penrose广义逆,I_k表示k阶单位矩阵,S_k表示k阶反序单位矩阵。R(A)表示A的列空间,N(A)表示A的零空间,rank(A)表示矩阵A的秩。对A=(a_(ij)),B=(b_(ij))∈R~(n×m),A*B表示A与  相似文献   

4.
矩阵方程AXB+CYD=E对称最小范数最小二乘解的极小残差法   总被引:1,自引:0,他引:1  
<正>1引言本文用R~(n×m)表示全体n×m实矩阵集合,用SR~(n×n)表示全体n×n实对称矩阵集合,OR~(n×n)表示全体n×n实正交矩阵集合.用I_n表示n阶单位矩阵,用A*B表示矩阵A与B的Hadamard乘积.对任意矩阵A,B∈R~(n×m),定义内积〈A,B〉=tr(B~T A),其中  相似文献   

5.
1.模糊矩阵及半序关系若矩阵 A=[a_(ij)]_(n×m),其中0≤a_(ij)≤1,则称 A 是一个 n×m 阶模糊矩阵,这种模糊矩阵的全体记为 M_(n×m).任意 A=[a_(ij)]_(n×m),B=[b_(ij)]_(n×m) 是两个 n×m 阶模糊矩阵,若 b_(ij)≤a_(ij),1≤i≤n,1≤j≤m,记为 B≤A(或等价记为 A≥B);关系“≤”(或“≥”)构成了 M_(n×m)中的一个半序关系.在 M_(n×m)中定义:  相似文献   

6.
<正>1引言记R~(m×n)为全体m×n阶实矩阵集合;给定矩阵A,B∈R~(m×n),记(A,B)=tr(A~TB)为矩阵A与B的内积;||A||_F=(A,A)~(1/2)=(tr(A~TA))~(1/2)为矩阵A的Frobenius范数;vec(A)为矩阵A的拉直向量;A(p_1:p_2,)为矩阵A的pz行到p2行元素组成的子矩阵;A(,q_1:q_2)为矩阵A的q_1列到q_2列元素组成的子矩阵;A(p_1:p_2,q_1:q_2)为矩阵A的p_1行到p_2行和q_1列到q_2列相交处元素组成的子矩阵;如果(A,B)=tr(A~TB)=0,则称  相似文献   

7.
非负矩阵谱半径的两个性质及其应用   总被引:1,自引:0,他引:1  
本文改进了Perron-Frobenius非负矩阵理论中有关非负矩阵谱半径的两条定理,利用该结果给出了文[3]中Jacobi迭代收敛定理的一种简单证明。以下记:n阶方阵A(α_(ij))_(n×n),非负矩阵|A|(|a_(ij)|)_(n×n),ρ(A)表示A的谱半径,I表示单位矩阵。  相似文献   

8.
广义严格对角占优阵的判定程序   总被引:3,自引:1,他引:2  
1 引言和符号 在本文中,均采用下列符号而不再重申.恒用N表示前n个自然数的集合;而用Mn(C)和Mn(R)分别表示所有n阶复矩阵和所有n阶实矩阵的集合. Z_N={A|A=(a_(ij))_(n×n)∈Mn(R),a_(ij)≤0,i,j∈N,i≠j},I恒表示单位矩阵. 如果A∈Mn(R)且A的所有元素都为非负实数,则称A为非负方阵,并记为A≥0;若A的所有元素都为正数,则称A为正矩阵,并记为A>0. 对A=(a_(ij))(n×n)∈Mn(C),令A_i(A)=sum from j=1 j≠i to n (|a_(ij)|(i=1、2…… n)) ;若把A的非零元用1代替 而得到—个n阶(0,1)矩阵。称为A的导出矩阵。记为;而把A的比较矩阵记为 u(A)=(b_(ij))_(n×n))其中b_(ij)=|a_(ij)|,b_(ij)=-|a_(ij)|(i,j∈N i≠j)  相似文献   

9.
线性流形上实对称矩阵最佳逼近   总被引:27,自引:4,他引:23  
戴华 《计算数学》1993,15(4):478-488
1.引言 首先介绍一些记号,IR~(n×m)表示所有n×m实矩阵的全体,SIR~(n×n)表示所有n×n实对称矩阵的全体,OIR~(n×n)表示所有n×n正交矩阵的全体,I_n表示n阶单位矩阵,A~T和A~+分别表示矩阵A的转置和Moore-Penrose广义逆。对A=(a_(ij)),B=(b_(ij))∈IR~(n×m),A*B表示A与B的Hadamard积,定义为A*B=(a_(ij)b_(ij)),并且定义A与B的内积  相似文献   

10.
§1 问题的提法R~(n×m)表示所有 n×m 阶实阵集合,(A)表示矩阵 A 的列空间,A~+表示 A 的 Moore-Penrose 广义逆,P_A=AA~+表示到(A)的正交投影核子;I_n 表示 n 阶单位阵,‖·‖_F 表示 Frobenius 范数。问题Ⅰ给定X,Y∈~(n×m),Λ=diag(λ_1,λ_2,…,λ_m)∈R~(m×m),找 A∈R~(n×m),使得问题Ⅱ给定 A~*∈R~(n×n),找∈S_E,使得‖A~*-‖_F=‖A~*-A‖_F,其中 S_E是问题Ⅰ的集合。本文讨论问题Ⅰ有解的充分与必要条件,且求出 S_E的表达式,同时给出的表达式。  相似文献   

11.
四元数自共轭矩阵与行列式的几个定理   总被引:2,自引:0,他引:2  
本文继续使用文献[1],[2],[3],[4],[5]的符号和术语。对四元数体Q上的自共轭矩阵与行列式进行讨论得到几个重要定理。为此,先作几点说明。 2.设A为四元数体Q上的一个n阶矩阵,若A=(即,A=a_(ij),a_(ij)∈Q。恒有a_(ij)=a_(ji))。则说A是四元数体Q上的一个自共轭矩阵。自共轭四元矩阵A的行列式记为‖A‖。  相似文献   

12.
矩阵方程的最小二乘解   总被引:15,自引:3,他引:12  
1 引言与引理设 Rm× n表示所有 m× n阶实矩阵的集合 ,ORn× n为所有 n阶实正交矩阵的全体 ,In 是 n阶单位矩阵 .AT、A+、rank A分别表示矩阵 A的转置、MP逆及秩 ;‖·‖是矩阵的Frobenius范数 .此外 ,对于 A =(αij)∈ Rs× s,B =(βij)∈ Rs× s,A * B表示 A与 B的Hadamard积 ,其定义为 :A* B=(αijβij) 1≤ i,j≤ s,现考虑如下问题 :问题 P 给定 A∈Rn× m,B∈Rp× m,D∈Rm× m求 X∈Rn× p,使得Φ =‖ ATXB - BTXTA - D‖ =m in  我们知道 ,矩阵方程 ATX B- BTXTA=D在自动控制理论中有很重要的作用[1 ,2 ] .…  相似文献   

13.
为矩阵A与B的张量积,记为C=A(?)B。 定义Ⅰ设A=(a_(ij))∈C~(n×n),B=(b_(ij))∈C~(m×m)。若A在某位置(f,f)之非零元素链中有一个含r_1个A中的非零元:A(f,f)=a_(fe_1)a_((e_1)(e_2)…a_(e_r))(?),B在某位置(t,t)之非零元素链中有一个含r_2个B中的非零元:B(t,t)=b_((ts_1))b_((s_1s_2))…bs_(s_r_2-1)l,且(r_1,r_2)=1,1≤f≤n,1≤r≤m,则称A,B满足弱链条件。  相似文献   

14.
由谱数据数值稳定地构造实对称带状矩阵   总被引:1,自引:0,他引:1  
戴华 《计算数学》1990,12(2):157-166
§1.引言 设r,n是正整数并且0r有a_(ij)=0.  相似文献   

15.
1 引言 设Rn×m为所有n×m实矩阵的集合,ASRn×n为n阶实反对称矩阵的集合,ORn×n 为n阶实正交矩阵的全体. In是n阶单位矩阵,A+,R(A),N(A)分别表示矩阵A的 Moore-Penrose广义逆、值域及零空间,并记EA=I-AA+,FA=I-A+A(I为单位矩 阵,A为任意矩阵).对A=(aij),B=(bij)∈Rn×m,A*B=(aijbij)表示矩阵A与B 的Hadamard积.在Rn×m上定义矩阵A与B的内积为(A,B)=tr(BT A),则由此内积 导出的范数‖A‖=(A,A)~(1/2)是矩阵的Frobenius范数,并且Rn×m构成一个完备的内积 空间.  相似文献   

16.
线性流形上Hermite-广义反Hamilton矩阵反问题的最小二乘解   总被引:8,自引:0,他引:8  
张忠志  胡锡炎  张磊 《计算数学》2003,25(2):209-218
1.引言 令Rn×m表示所有n×m实矩阵集合,Cn×m表示所有n×m复矩阵集合,Cn=Cn×1,HCn×n表示所有n阶Hermite矩阵集合,UCn×n表示所有n阶酉矩阵集合,AHCn×n表示所有n阶反Hermite矩阵集合,R(A)表示A的列空间,N(A)表示A的零空间,A+表示A的Moore—Penrose广义逆,A*B表示A与B的Hadamard积,rank(A)表示矩阵A的秩.tr(A)表示矩阵A的迹.矩阵A,B的内积定义为(A,B)=tr(BHA),A,B∈Cn×m,由此内积诱导的范数为||A||=√(A,A)=[tr(AHA)]1/2,则此范数为Frobenius范数,并且Cn×m构成一个完备的内积空间,In表示n阶单位阵,i=√-1,记OASRn×n表示n×n阶正交反对称矩阵的全体,即  相似文献   

17.
称X∈R~(m×n)为实(R,S)对称矩阵,若满足X=RXS,其中R∈R~(m×m)和S∈R~(n×n)为非平凡实对合矩阵,即R=R~(-1)≠±I_m,S=S~(-1)≠±I_n.该文将优化理论中求凸集上光滑函数最小值的增广Lagrangian方法应用于求解矩阵不等式约束下实(R,S)对称矩阵最小二乘问题,即给定正整数m,n,p,t,q和矩阵A_i∈R~(m×m),B_i∈R~(n×n)(i=1,2,…,q),C∈R~(m×m),E∈R~(p×m),F∈R~(n×t)和D∈R~(p×t),求实(R,S)对称矩阵X∈R~(m×m)且在满足相容矩阵不等式EXF≥D约束下极小化‖∑_(i=1)~qA_iXB_i-C‖,其中EXF≥D表示矩阵EXF-D非负,‖·‖为Frobenius范数.该文给出求解问题的矩阵形式增广Lagrangian方法的迭代格式,并用数值算例验证该方法是可行且高效的.  相似文献   

18.
关于矩阵切触有理插值   总被引:7,自引:2,他引:5  
1 矩阵切触插值连分式 设实区间[a,b]中由不同点组成的插值结点为x_1,x_2,…,x_n,它们的重数分别为a_1,a_2,… ,a_n,M=sum from i=l to n(a_i-1),与之对应的待插值矩阵集为 {A_i~(k):k=0,1,…,a_i-1,i=1,2,…,n,A_i~(k)=A~(k)(x_i)∈R~(d×d)}. 设方阵A=(a_(ij)),它的广义矩阵逆定义为 A~(-1)= A/‖A‖~2 (A≠0) (1.1)  相似文献   

19.
成对比较矩阵的一种逼近   总被引:1,自引:0,他引:1  
蒋正新  魏挹湘 《计算数学》1990,12(2):216-220
§1.问题的陈述 令R~(n×n)表示所有n×n阶实矩阵构成的线性空间,并定义其子集如下: P={p=(p_(ij))∈R~(n×n)|p_(ij)>0,p_(ik)=p_(ki)~(-1)}, Q={q=(qi_(ij))∈R~(n×n)|q_(ij)>0,q_(ik)q_(kj)=q_(ij)}.把P叫做正的互反矩阵(或判断矩阵)的集合,而称Q为相容性矩阵的集合.显然,Q为P的子集,且两者都不是R~(n×n)中的凸集.任取a,b∈R~(n×n),定义内积和范数如下:  相似文献   

20.
一类对称正交对称矩阵反问题的最小二乘解   总被引:19,自引:1,他引:18  
1 引言 本文记号R~(n×m),OR~(n×n),A~+,I_k,SR~(n×n),rank(A),||·||,A*B,BSR~(n×n)和ASR~(n×n)参见[1].若无特殊声明文中的P为一给定的矩阵且满足P∈OR~(n×n)和P=P~T. 定义1 设A=(α_(ij))∈R~(n×n).若A满足A=A~T,(PA)~T=PA则称A为n阶对称正交对称矩阵;所有n阶对称正交对称矩阵的全体记为SR_P~n.若A∈R~(n×n)满足A~T=A,(PA)~T=-PA,则称A为n阶对称正交反对称矩阵;所有n阶对称正交反对  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号