首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
离子液体的制备及其在酶催化反应中的应用   总被引:3,自引:0,他引:3  
夏咏梅  吴红平  张玥  方云  孙诗雨  石玉刚 《化学进展》2006,18(12):1660-1667
离子液体,尤其是非水溶性离子液体可以作为一种溶剂或酶的载体用于非水相酶促反应中,也可以用于双相体系中的酶促反应。本文概括性介绍了常见离子液体的制备,总结和讨论了离子液体中酶的活性、稳定性、反应选择性以及各类酶在离子液体中的催化反应行为。离子液体的物性及其与酶的相容性对酶本身及酶促反应都有很大的影响。在非水相酶促反应中,离子液体的极性作用不遵从通常用来判别大多数有机物溶剂行为的规则,比如lgP规则。  相似文献   

2.
有机相中固定化脂肪酶催化合成植物甾醇酯   总被引:3,自引:0,他引:3  
蒋振华  于敏  任立伟  周华  韦萍 《催化学报》2013,34(12):2255-2262
酶法合成植物甾醇酯具有反应条件温和、产物纯度和产量高等优点,但非水相酶催化的活性和稳定性普遍较低.本文以大孔树脂固定化脂肪酶为催化剂,并在催化过程中添加乳糖的类似物,构建了有机相高效合成植物甾醇酯的工艺过程.以酯化率为考察指标,对脂肪酶和反应溶剂进行筛选,对酯化条件进行优化,同时考察了糖的种类及添加量对酶催化性能的影响.结果表明,大孔树脂NKA吸附固定化的褶皱假丝酵母(Candida rugosa)脂肪酶(NKA-CRL)为最适宜的催化剂,以正己烷为反应介质,在酸醇摩尔比为2和添加酶蛋白质量7.5%的海藻糖的条件下,40°C反应10 h,酯化率达到96.6%.连续6次催化后,植物甾醇的酯化率仍维持在85.0%以上.  相似文献   

3.
非水溶剂中酶反应研究进展   总被引:7,自引:0,他引:7  
本文报道了在非水溶剂系统中进行酶促反应的最新进展。对于酶反应的低水体系与必需水,酶活性与非水介质性质之间的关系,疏水参数logP,介质工程与酶经酶经配体印迹后,其活性比未经印迹的酶活性明显提高等进行了介绍,并举例说明了在非水溶剂中进行酶促反应的应用前景。  相似文献   

4.
非水介质中酶催化的反应研究新进展   总被引:9,自引:0,他引:9  
介绍了非水介质中酶催化反应有机合成中的应用及手性化合物的酶促拆分与合 成反应,分析了冷冻干燥保护剂和修饰剂对酶性质的影响,论述了固定化酶在有机 溶剂中的应用,并讨论了影响固定化酶性质的因素。  相似文献   

5.
水对脂肪酶非水相催化拆分2-辛醇的影响   总被引:1,自引:0,他引:1  
利用假单胞菌脂肪酶在有机溶剂中催化的对映选择性酯化反应,对外消旋(R,S)-2-辛醇进行了动力学拆分,考察了水对脂肪酶非水相催化性能的影响.结果表明,酶在有机溶剂中的活力显著依赖于系统的加水量,二者呈钟罩形曲线,但最佳加水量范围以及酶的活力大小因溶剂不同而异;在最佳加水量范围内,系统含水量的变化对酶的对映选择性影响不大,但加水量增大(>1%,V/V)会导致逆反应(酯的水解)加剧而降低醇的光学纯度;在反应进行一定时间后,添加分子筛移走酯化反应生成的水,可显著提高反应的转化率,并增大醇的对映体过量,但当超过快反应(R-醇的酯化)的平衡转化率时,反而会造成残留醇的光学纯度下降.用二甲基甲酰胺和乙二醇取代部分或全部的水添加于非水相酶反应系统,也能起到与水类似的甚至更强的激活酶的作用.  相似文献   

6.
利用气相色谱手性分析,对醇腈酶促不对称合成手性氰醇中的pH值、温度、底物浓度和水含量对酶反应速度和非酶反应速度的影响作了研究。结果表明,上述因素对酶反应和非酶反应速度均有显著影响。在水含量较低的非水相酶反应体系中,pH值在4.0以下或反应温度为0-5℃时,非酶反应受到较大程度的抑制,而酶反应仍具有相对较快的反应速度,故可获得高光学纯度的产物。  相似文献   

7.
以硅藻土吸附的脂肪酶为催化剂,对外消旋酮基布洛芬[2-(3-苯甲酰苯基)丙酸]进行对映选择性酯化反应;考察了不同的脂肪酶制剂,固定化时所加缓冲液的体积与pH值,酰基受体(醇)的种类以及混合溶剂系统的组成等因素对酶活性的影响.结果表明,在所考察的7种脂肪酶中,以LipaseOF的酪化活性最高;用硅藻土吸附固定化酶时,缓冲溶液的最适pH为7.0左右,每克酶粉加1.0mL缓冲溶液为最佳;固定化酶催化酯化的活性比游离的脂肪酶高.在酮基布洛芬与不同酰基受体(醇)的酶促酯化反应中,以丙醇的反应速度为最快.在由一种主溶剂与一种助溶剂组成的混合溶剂系统中,酶促酯化的速度要比在单一的主溶剂或助溶剂系统中快.当以1gP值较大的环己烷或异辛烷等为主溶剂,甲苯为助溶剂时,脂肪酶催化酮基布洛芬酯化反应的活性最高.  相似文献   

8.
水-乙醇混合溶剂中过氧化氢酶活性与构象的研究   总被引:12,自引:0,他引:12  
用微量热法和荧光法分别测定了水-乙醇混合溶剂中过氧化氢酶活性与构象的变化。结果表明,随着乙醇浓度的增大,过氧化氢酶酶促反应的米氏常数K~m有所增大,而反应速率常数k~2及酶的催化活性则明显降低;336nm处的相对荧光强度不断增强,酶分子的构象发生了变化,其结构渐趋松散。乙醇对过氧化氢酶活性的影响乃是乙醇的竞争性抑制和溶剂效应引起的酶构象变化共同作用的结果。  相似文献   

9.
单分散酸性纳米二氧化硅的合成新方法   总被引:5,自引:1,他引:4  
非极性有机溶剂中,乙酸和醇在没有酸性催化剂的情况下发生酯化反应,酯化生成的水水解TEOS(硅酸乙酯)合成单分散酸性纳米二氧化硅,粒径从数十纳米到数百纳米。TEM研究表明,溶剂的极性影响二氧化硅的形态,只有在非极性溶剂中才可以得到球形粒子,醇的种类和TEOS的浓度影响粒子的大小和粒径分布,利用FTIR和GC对TEOS的水解和二氧化硅形成过程进行研究。同时,文中提出了有机相在TEOS的酯化水水解、晶核的形成和生长的过程模型。  相似文献   

10.
将微波辐射用于非水相酶催化可以获得很多有别于常规加热下的反应结果。本文讨论了微波的非热效应在酶促反应中的表现,探讨了微波辐射对酶的结构、构象、活性及酶催化反应动力学的影响,以及微波辐射-酶耦合催化对反应的对映选择性、底物专一性、前手性选择性和区域选择性的影响。在大多数场合,适当的微波辐射不会损伤酶活而且可以提高反应速率,而对酶特异性的影响则不一而论。  相似文献   

11.
The synthesis of monocaprin, monolaurin, and monomyristin in a solvent-free system was conducted by mixing a commercial immobilized lipase with the organic reactants (glycerol and fatty acids) in a 20-mL batch reactor with constant stirring. The effects of temperature, fatty acid/glycerol molar ratio, and enzyme concentration on the reaction conversion were determined. The addition of molecular sieves in the assays of monomyristin synthesis was also evaluated. The reactions were carried out for 5 to 6 h and the nonpolar phase was analyzed by gas chromatography. The best results in terms of selectivity and conversion (defined as the percentage of fatty acid consumed) were achieved when the stoichiometric amount of reagents (molar ratio=1) and 9% (w/w) commercial enzyme were used and the reaction was performed at 60°C. The addition of molecular sieves did not improve the synthesis of monomyristin. Conversions as high as 80%, with monoglycerides being the major products, were attained. After 5 h of reaction, the concentration of monoglyceride was about twice that of diglyceride, and only trace amounts of triglyceride were found. The results illustrate the technical possibility of producing medium chain monoglycerides in a solvent-free medium using a simple batch reactor.  相似文献   

12.
Organic solvent-stable lipases have pronounced impact on industrial economy as they are involved in synthesis by esterification, interesterification, and transesterification. However, very few of such natural lipases have been isolated till date. A study of the recent past provided few pillars to rely on for this work. The three-dimensional structure, inclusive of the surface and active site, of 29 organic solvent-stable lipases was analyzed by subfamily classification and protein solvent molecular docking based on fast Fourier transform correlation approach. The observations revealed that organic solvent stability of lipases is their intrinsic property and unique with respect to each lipase. In this paper, factors like surface distribution of charged, hydrophobic, and neutral residues, interaction of solvents with catalytically immutable residues, and residues interacting with essential water molecules required for lipase activity, synergistically and by mutualism contribute to render a stable lipase organic solvent. The propensity of surface charge in relation to stability in organic solvents by establishing repulsive forces to exclude solvent molecules from interacting with the surface and prohibiting the same from gaining entry to the protein core, thus stabilizing the active conformation, is a new finding. It was also interesting to note that lipases having equivalent surface-exposed positive and negative residues were stable in a wide range of organic solvents, irrespective of their LogP values.  相似文献   

13.
Enzymatic synthesis of medium-chain triglycerides in a solvent-free system   总被引:3,自引:0,他引:3  
The synthesis of tricaprylin, tricaprin, trilaurin, and trimyristin in a solvent-freesystem was conducted by mixing a commercial immobilized lipase (Lipozyme IM 20, Novo Nordisk, Bagsvaerd, Denmark) with the organic reactants (glycerol and fatty acids) in a 20-mL batch reactor with constant stirring. In a first set of experiments, the effect of water concentration (0–6%) on the reaction conversion was shown to be negligible. In a second set of experiments, the effects of temperature (70–90°C), fatty acid/glycerol molar ratio (1–5), and enzyme concentration (1–9%[w/w]) on the reaction conversion were determined by the application of a 3×3 experimental design. The reactions were carried out for 26 h and the nonpolar phase was analyzed by gas chromatography (GC). Appreciable levels of medium-chain triglycerides were achieved, except for tricaprylin. For the triglyceride production, higher selectivity was attained under the following conditions: molar ratio of 5, enzyme concentration of 5 or 9% (w/w) and temperatures of 70°C (Tricaprin), 80°C (trilaurin), and 90°C (trimyristin). Statistical analysis indicated that the fatty acid/glycerol molar ratio was the most significant variable affecting the synthesis of triglycerides.  相似文献   

14.
Partition coefficients P of the HNCS, HNCO and HN3 hydropseudohalic acids between a number of organic solvents and water were determined. It has been found that log P increases with pKa of the acid and with the basicity of the solvent, but the effect of pKa on P is the smaller the more basic is the solvent. The relationships have been explained in terms of hydrogen bond formation between undissociated acid and solvent molecules. H-bonding between the pseudohalic acids and organic solvents has been confirmed by IR spectra on the example of HN3 in benzene. Association constants for H-bonding between the three acids and water, benzene, dibutyl ether and tri-n-butyl phosphate were determined from partition data. It has been found that H-bonding increases with the strength of the acid, whereas the contribution to partition from non-specific interactions with water and organic solvents depends on the molecular surface area of the acid molecule.  相似文献   

15.
The synthesis of tricaprylin, tricaprin, trilaurin, and trimyristin in a solvent-free system was conducted by mixing a commercial immobilized lipase with the organic reagents (glycerol and fatty acid) in a 20-mL batch reactor with constant stirring. The effects of temperature, fatty acid/glycerol molar ratio, and enzyme concentration on the reaction conversion were determined. The reactions were carried out for 26 h and the nonpolar phase was analyzed by gas chromatography. Appreciable levels of medium chain triglycerides were achieved, except for tricaprylin. The higher selectivity values for the production of triglycerides were attained under the following conditions: a fatty acid/glycerol molar ratio of 5; enzyme concentration of 5 or 9% (w/w); and temperatures of 70°C (tricaprin), 80°C (trilaurin), and 90°C (trimyristin). After completion of the esterification reaction under these conditions, the recovery of the triglyceride and fatty acids, and the reusability of the enzyme were studied. The unreacted fatty acid and the produced triglyceride were satisfactorily recovered. The commercial immobilized lipase was used in 10 consecutive batch reactions at 80°C, with 100% selectivity in the trilaurin and trimyristin synthesis. The possibility of enzyme reuse and the recovery of residual fatty acid are relevant results that contribute to increasing the viability of the process.  相似文献   

16.
Several triacylglycerol (TAG) molecular species, that contain two short-chain fatty acids (C4 to C8) at the sn-2 and sn-3 positions of the glycerol backbone, were isolated from bovine udder by using solvent extraction and silica gel column chromatography. Their structures were identified by fast atom bombardment (FAB) tandem mass spectrometry (MS/MS), based on the information obtained from collision-induced dissociation (CID) spectra of sodium-adducted molecules ([M + Na](+)) of model TAG compounds which had been synthesized from glycerol and appropriate fatty acids. For each species, the relative positions of the three fatty acids on the glycerol backbone, as well as fatty acid composition and double-bond position in the fatty acyl group, were determined. A majority of sodium-adducted molecules observed in the FAB mass spectrum were mixtures of at least two components that have different fatty acid composition but the same molecular mass. In addition, all the components present in mixtures of all the species contain a long-chain fatty acid (C12 to C18) at the sn-1 position, a short-chain fatty acid (C4 to C8) at the sn-2 position, and a butyric acid uniquely at the sn-3 position.  相似文献   

17.
The electronic absorption spectra of some substituted pyridinols in organic solvents of different polarities are studied. Also, the solvent effects on the intramolecular charge transfer bands are discussed using various solvent parameters. The acid-base equilibria of the compounds used are studied spectrophotometrically in various mixed aqueous solvents at 25 degrees C and 0.1 M ionic strength (NaClO4). Furthermore, the influence of the solvents on the dissociation constants and tautomeric equilibria of a pyridinol derivatives are discussed. The effect of molecular structure of the pyridinols on the pK's is also examined.  相似文献   

18.
Ethyl- and propylammonium nitrate are novel ionic solvents, liquid at room temperature, suitable for use as selective solvents for the isolation of analytes containing proton donor functional groups (alcohols, amines, phenols, carboxylic acids, etc.) by liquid-liquid distribution. These solvents form immiscible solvent pairs with non-polar aliphatic and aromatic hydrocarbons, ethers and alkyl halide solvents (e.g., methylene chloride, chloroform). Analytes can be recovered from the ionic solvents by back-extraction into ah organic solvent after dilution with water or pH buffer or, preferably, by extractive derivatization when gas chromatography is used for the analyses, avoiding the accumulation of salt on the column that results in poor baseline stability. Alkylation, acylation and particularly silylation are suitable methods for extractive derivatization using standard reaction conditions. Applications are presented for the isolation of polar analytes from an urban dust, shale oil and urine samples and for the determination of low-molecular-weight alcohols in gasahol and glycerol in soap. Liquid-liquid chromatographic systems with the liquid organic salt as stationary phase can be used to predict distribution constants for a particular separation and for the separation of polar solutes, particularly isomeric compounds possessing a proton donor functional group.  相似文献   

19.
A continuum treatment of electronic polarization has been explored for in molecular mechanics simulations in implicit solvents. The dielectric constant for molecule interior is the only parameter in the continuum polarizable model. A value of 4 is found to yield optimal agreement with high-level ab initio quantum mechanical calculations for the tested molecular systems. Interestingly, its performance is not sensitive to the definition of molecular volume, in which the continuum electronic polarization is defined. In this model, quantum mechanical electrostatic field in different dielectric environments from vacuum, low-dielectric organic solvent, and water can be used simultaneously in atomic charge fitting to achieve consistent treatment of electrostatic interactions. The tests show that a single set of atomic charges can be used consistently in different dielectric environments and different molecular conformations, and the atomic charges transfer well from training monomers to tested dimers. The preliminary study gives us the hope of developing a continuum polarizable force field for more consistent simulations of proteins and nucleic acids in implicit solvents.  相似文献   

20.
Photophysical properties of 2-(4-(dimethylamino)styryl)-1-methylpyridinium iodide (DASPMI) in various solvents were investigated using time- and space-correlated single photon counting. DASPMI is known to selectively stain mitochondria in living cells.1,2 The uptake and fluorescence intensity of DASPMI in mitochondria is a dynamic measure of membrane potential. Hence, an endeavor has been made to elucidate the mechanism of DASPMI fluorescence by obtaining spectrally resolved fluorescence decays in different solvents. A biexponential decay model was sufficient to globally describe the wavelength-dependent fluorescence in ethanol and chloroform. While in glycerol, a three-exponential decay model was necessary for global analysis. In the polar low-viscous solvent water, a monoexponential decay model fitted the decay data. The sensitivity of DASPMI to solvent viscosity was analyzed using various proportions of glycerol-ethanol mixtures. The lifetimes were found to increase with increasing solvent viscosity. The negative amplitudes of the short lifetime component found in chloroform and glycerol at the longer wavelengths validated the formation of new excited-state species from the initially excited state. Time-resolved emission spectra in chloroform and glycerol showed a biphasic increase of spectral width and emission maxima. The spectral width had an initial fast increase within 150 ps and a near constant thereafter. A three-state model of generalized scheme, on the basis of successive formation of locally excited state (LE), intramolecular charge transfer state (ICT), and twisted intramolecular charge transfer (TICT) state, has been proposed to explain the excited-state kinetics. The presumed role of solvation dynamics of ICT and TICT states leading to the asymmetrical broadening and structureless fluorescence has been substantiated by the decomposition of time-resolved emission spectra in chloroform, glycerol, and ethanol/glycerol mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号