首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
碳的热处理对PEMFC氧电极性能的影响   总被引:3,自引:0,他引:3  
氧还原反应;碳黑;碳的热处理对PEMFC氧电极性能的影响;聚合物燃料电池;氧电极  相似文献   

2.
Platinum nanoparticles were successfully deposited within a multiwalled carbon nanotube (MWCNT)–Nafion matrix by a cyclic voltammetry method. A Pt(IV) complex was reduced to platinum nanoparticles on the surface of MWCNTs. The resulting Pt nanoparticles were characterized by scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The Pt–MWCNT–Nafion nanocomposite film-modified glassy carbon electrode had a sharp hydrogen desorption peak at about −0.2 V vs. Ag/AgCl (3 M) in a solution of 0.5 M H2SO4, which is directly related to the electrochemical activity of the Pt nanoparticles presented on the surface of MWCNTs. The electrocatalytic properties of the Pt–MWCNT–Nafion nanocomposite-modified glassy carbon electrode for methanol electrooxidation were investigated by cyclic voltammetry in a 2 M CH3OH + 1 M H2SO4 solution. In comparison with the Pt-coated glassy carbon electrode and the Pt–Nafion modified glassy carbon electrode, the Pt–MWCNT–Nafion-modified electrode had excellent electrocatalytic activity toward methanol electrooxidation. The stability of the Pt–MWCNT–Nafion nanocomposite-modified electrode had also been evaluated.  相似文献   

3.
After the deposition of Pt on their surface, the carbon nanofiber materials synthesized by sequential oxidation and pyrolysis of electrospun nanofiber mats based on polyacrylonitrile are used as the gas-diffusion electrodes for high-temperature hydrogen–air fuel cells on a polybenzimidazole (PBI) proton-conducting membranes. In contrast to the traditional methods of electrode preparation in which the catalyst (Pt) nanoparticles are localized on the surface of carbon black which is applied as “ink” on the conducting support (carbon paper or tissue), in this study the Pt nanoparticles are being deposited and developed on the surface carbon nanofibers to form a combined gas-diffusion material. In the tests, the resulting electrodes demonstrate good efficiency within hydrogen-air fuel cells on the PBI membrane.  相似文献   

4.
Pt–Pd bimetallic nanoparticles supported on graphene oxide (GO) nanosheets were prepared by a sonochemical reduction method in the presence of polyethylene glycol as a stabilizing agent. The synthetic method allowed for a fine tuning of the particle composition without significant changes in their size and degree of aggregation. Detailed characterization of GO-supported Pt–Pd catalysts was carried out by transmission electron microscopy (TEM), AFM, XPS, and electrochemical techniques. Uniform deposition of Pt–Pd nanoparticles with an average diameter of 3 nm was achieved on graphene nanosheets using a novel dual-frequency sonication approach. GO-supported bimetallic catalyst showed significant electrocatalytic activity for methanol oxidation. The influence of different molar compositions of Pt and Pd (1:1, 2:1, and 3:1) on the methanol oxidation efficiency was also evaluated. Among the different Pt/Pd ratios, the 1:1 ratio material showed the lowest onset potential and generated the highest peak current density. The effect of catalyst loading on carbon paper (working electrode) was also studied. Increasing the catalyst loading beyond a certain amount lowered the catalytic activity due to the aggregation of metal particle-loaded GO nanosheets.  相似文献   

5.
Poly(styrene)-block-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymer was used as a micellar template to fabricate arrays of Pt nanoparticles on mica and glassy carbon (GC) supports. Polymer micellar deposition yields Pt nanoparticles with tunable particle size and surface number density on both mica and GC. After deposition of precursor-loaded micelles onto GC, oxygen plasma etching removes the polymer shell, followed by thermal treatment with H2 gas to reduce the Pt. Etching conditions were optimized to maximize removal of the polymer while minimizing damage to the GC. Arrays of Pt nanoparticles with controlled size and surface number density can be prepared on mica (for particle size characterization) and GC to make Pt/GC model catalysts. These model catalysts were characterized by tapping mode atomic force microscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry to measure activity for oxidation of carbon monoxide or methanol. Cyclic voltammetry results demonstrate the existence of a correlation between Pt particle size and electrocatalytic properties including onset potential, tolerance of carbonaceous adsorbates, and intrinsic activity (based on active Pt area from CO stripping voltammetry). Results obtained with Pt/GC model catalysts duplicate prior results obtained with Pt/porous carbon catalysts therefore validating the synthesis approach and offering a new, tunable platform to study catalyst structure and other effects such as aging on proton exchange membrane fuel cell (PEMFC) reactions.  相似文献   

6.
High metal-loading Pt/C electrocatalysts are important for the fabrication of thin-layered membrane electrode assemblies (MEAs). However, the preparation of high-loading Pt catalysts with a narrow size distribution of nanoparticles remains a challenge. Herein, ordered mesoporous carbon (OMC) with large mesopores (~15 nm) and a high surface area (1316.0 m2 g?1) was fabricated using a SiO2 nanosphere array as a template. This material was developed to support a high loading of Pt nanoparticles (60 wt%) and was then used as an electrocatalyst for the methanol oxidation reaction (MOR). The prepared Pt/OMC contains Pt nanoparticles with an average size of ~1.9 nm that are uniformly dispersed on the mesoporous walls of the OMC. The Pt/OMC catalyst exhibits smaller Pt nanoparticle size, greater Pt dispersion, larger specific electrochemically active surface area (ECSA), and higher electrocatalytic activity for the MOR than the carbon black (Vulcan XC-72R)-supported Pt and the commercial Pt/C catalysts.  相似文献   

7.
石墨烯负载Pt催化剂的催化氧化发光性能   总被引:1,自引:0,他引:1  
利用溶胶固定化工艺合成了石墨烯负载Pt纳米颗粒的Pt/石墨烯催化剂.研究了分散在石墨烯上的Pt颗粒尺寸和负载量对CO催化发光性能的影响规律,探查了催化剂的某些分析特性及对其它气相体系的催化氧化性能.结果表明,Pt纳米颗粒可以很好地分散在石墨烯表面,并有较快的催化反应速率,Pt颗粒越小催化发光强度越大.当不同Pt负载量(0.4%-1.6%(w,质量分数))的催化剂作用于40%(φ,体积分数)以下浓度的CO/空气体系时,产生的催化发光强度均与CO浓度成正比,其中以负载量0.8%最优;但随CO浓度继续增加,低Pt负载量(0.4%,0.8%)催化剂的发光强度下降,而高Pt负载量(1.2%,1.6%)催化剂的发光强度继续上升,且Pt负载量越高,催化氧化发光能力越强.该催化剂在一定条件下,不但对CO氧化有较好的催化发光性能,还对乙醚、无水甲醇和甲苯有不同程度的催化氧化发光活性;但二氧化碳、甲醛、戊二醛、丙酮、乙酸乙酯、三氯甲烷、水蒸气均无响应信号.  相似文献   

8.
A new type of surfactant with a hydrophile of dendritic polyethylenimine (C(12)(EI)(7)) was synthesized by a cationic polymerization of dodecylamine with aziridine and was used as a stabilizer to prepare Pt colloid, which is then used in situ to prepare carbon-supported Pt nanoparticles. The effects of supporting carbon, surfactant concentration, and calcination time on the nanoparticle size and catalytic performance were determined from the transmission electron microscopic analyses and cyclic voltammograms. In the presence of carbon, the Pt particle size increased slightly with lower C(12)(EI)(7) content, while those with higher C(12)(EI)(7) concentrations remained unchanged. For the heat-treated Pt/C catalyst, the molar ratio of C(12)(EI)(7) to H(2)PtCl(6) ([N]/[Pt] ratio) dominated the growth of Pt nanoparticles. The size decreased from 7.6 nm for a [N]/[Pt] ratio of 5 to 3.8 nm for a [N]/[Pt] ratio of 40. X-ray photoelectron spectroscopy revealed that metallic Pt(0) (81.6%) predominated the Pt species in the heat-treated catalyst, which is more than the commercial E-TEK catalyst. The data show clearly that thermal treatment had successively removed the stabilizing shells; moreover, it did not cause serious aggregation of particles in the presence of C(12)(EI)(7) and thus enhanced the catalytic activity. The interaction between Pt and C(12)(EI)(7) were studied and were explained in terms of a mechanism of dual-functional stabilization both on carbon and in the thermal treatment.  相似文献   

9.
Direct methanol fuel cell (DMFC) consisting of a double-catalytic layered membrane electrode assembly (MEA) provide higher performance than that with the traditional MEA. This novel structured MEA includes a hydrophilic inner catalyst layer and a traditional electrode with an outer catalyst layer, which was made using both catalyst coated membrane (CCM) and gas diffusion electrode (GDE) methods. The inner catalyst was PtRu black on anode and Pt black on cathode. The outer catalyst was carbon supported Pt–Ru/Pt on anode and cathode, respectively. Thus in the double-catalytic layered electrodes three gradients were formed: catalyst concentration gradient, hydrophilicity gradient and porosity gradient, resulting in good mass transfer, proton and electron conducting and low methanol crossover. The peak density of DMFC with such MEA was 19 mW cm−2, operated at 2 M CH3OH, 2 atm oxygen at room temperature, which was much higher than DMFC with traditional MEA.  相似文献   

10.
Platinum nanoparticles/carbon nanotubes (Ptnano/CNTs) were rapidly synthesized by microwave radiation, and applied for the oxidative determination of arsenic(III). The transmission electron microscopy (TEM) revealed the size of synthesized Pt nanoparticles with nominal diameter of 15 ± 3 nm. Ptnano/CNTs modified glassy carbon electrode (Ptnano/CNTs/GCE) exhibited better performance for arsenic(III) analysis than that of Pt nanoparticles modified GCE (Ptnano/GCE) by electrochemical deposition or Pt foil electrode. Excellent reproducibility of the Ptnano/CNTs/GCE was obtained with the relative standard deviation (RSD) of 3.5% at 20 repeated analysis of 40 μM As(III), while the RSD was 9.8% for Ptnano/GCE under the same conditions. The limit of determination (LOD) of the Ptnano/CNTs/GCE was 0.12 ppb, which was 1–2 orders of magnitude lower than that of Ptnano/GCE or Pt foil electrode.  相似文献   

11.
An extensive study has been conducted on the proton exchange membrane fuel cells (PEMFCs) with reducing Pt loading. This is commonly achieved by developing methods to increase the utilization of the platinum in the catalyst layer of the electrodes. In this paper, a novel process of the catalyst layers was introduced and investigated. A mixture of carbon powder and Nafion solution was sprayed on the glassy carbon electrode (GCE) to form a thin carbon layer. Then Pt particles were deposited on the surface by reducing hexachloroplatinic (IV) acid hexahydrate with methanoic acid. SEM images showed a continuous Pt gradient profile among the thickness direction of the catalytic layer by the novel method. The Pt nanowires grown are in the size of 3 nm (diameter)×10 nm (length) by high solution TEM image. The novel catalyst layer was characterized by cyclic voltammetry (CV) and scanning electron microscope (SEM) as compared with commercial Pt/C black and Pt catalyst layer obtained from sputtering. The results showed that the platinum nanoparticles deposited on the carbon powder were highly utilized as they directly faced the gas diffusion layer and offered easy access to reactants (oxygen or hydrogen).  相似文献   

12.
<正>Mesoporous carbon(MC) with surface area of 380 m~2/g was prepared and employed as the carbon support of Pt catalyst for counter electrode of dye-sensitized solar cells.Pt/MC samples containing 1 wt%Pt were prepared by reducing chloroplatinic acid on MC using wet impregnation.It was found that Pt nanoparticles were uniform in size and highly dispersed on MC supports.The average size of Pt nanoparticles is about 3.4 nm.Pt/MC electrodes were fabricated by coating Pt/MC samples on fluorine-doped tin oxide glass.The overall conversion efficiency of dye-sensitized solar cells with Pt/MC counter electrode is 6.62%,which is higher than that of the cells with conventional Pt counter electrode in the same conditions.  相似文献   

13.
A new method to electro-deposit platinum nanoparticles on the surface of multi-walled carbon nanotubes (MWNTs) functionalized with 4-mercaptobenzene has been described. X-ray photoelectron spectroscopy results reveal that 4-mercaptobenzene was attached to the surface of MWNTs. Transmission electron microscope and X-ray diffraction analysis confirm that platinum nanoparticles were highly dispersed on the surface of MWNTs, and the average size of the platinum particle is 4.2 nm. The electrocatalytic properties of the Pt/MWNT composite electrode for methanol oxidation were investigated by cyclic voltammetry, and the results show that the fabricated composites exhibit high catalytic activity and good long-term stability. The study provides a feasible approach to fabricate Pt/MWNT composite electrode for direct methanol fuel cell.  相似文献   

14.
采用直接化学还原法, 以金属钠为还原剂, 四氯乙烯为碳源, 在石蜡油中不经氧化石墨(GO)和氧化石墨烯(GrO)而直接制备石墨烯(Gr), 然后将Pt纳米粒子担载在Gr基体上, 得到Pt/Gr催化剂, 并对其催化氧还原(OR)性能进行了研究. 通过X射线衍射(XRD), 透射电镜(TEM)和电化学测试对合成催化剂的结构、形貌和电化学性质进行了表征. 实验结果表明: 所制备的Pt/Gr催化剂具有较好的分散性, 平均粒径为3.1 nm; 氧还原起始电位比商业JM-Pt/C催化电极正移了24 mV; 交换电流密度达到1×10-3 mA·cm-2, 是商业JM-Pt/C催化电极的2.5倍.  相似文献   

15.
Pt nanoparticles-loaded carbon black (CB) was prepared from Pt carbonyl cluster complexes, and had much narrower size distribution than commercial Pt nanoparticles/CB. In the former the monodispersed Pt nanoparticles were highly dispersed on CB without aggregation even at high Pt loading of 80 wt.%. Hydrodynamic voltammograms in O2-saturated 0.05 M H2SO4 solution at 30 °C showed that the onset potential of oxygen reduction reaction (ORR) current for the monodispersed Pt nanoparticles/CB electrode was more positive than that for a polycrystalline Pt electrode and similar to that for the commercial Pt nanoparticles/CB electrode. Moreover, the mass activity for ORR for the monodispersed Pt nanoparticles/CB electrode was ca. 4.9 times higher than that for the commercial Pt nanoparticles/CB electrode, clearly indicating that the control of size distribution of Pt nanoparticles is meaningful for reducing the Pt consumption.  相似文献   

16.
A novel gas diffusion electrode using binary carbon supports (carbon nanotubes and active carbon) as the catalyst layer was prepared. The electrochemical properties for oxygen reduction reaction (ORR) in alkaline electrolyte were investigated by polarization curves and electrochemical impedance spectroscopy. The results show that the binary-support electrode exhibits higher electrocatalytic activity than the single-support electrode, and the best performance is obtained when the mass ratio of carbon nanotubes and activated carbon is 50 ∶50. The results from their electrode kinetic parameters indicate that the introduction of carbon nanotubes as a secondary support provides high accessible surface area, good electronic conductivity and fast ORR kinetics. The electrocatalytic activity of binary-support electrodes is obviously improved by the deposition of Pt nanoparticles on carbon nanotubes, even at very low Pt loading (45.7 μg/cm2). In addition, the EIS analysis results show that the process of ORR may be controlled by diffusion of oxygen in the thin film for binary-support electrodes with or without Pt catalyst.  相似文献   

17.
Bamboo-shaped carbon nanotubes (BCNTs), with a large amount of pentagon defects introduced in the walls, were explored as the support of high loaded Pt–Ru catalysts for the anode of direct methanol fuel cells (DMFCs) in comparison with conventional carbon nanotubes (CNTs) and Vulcan XC carbon black. By ethylene glycol reduction, Pt–Ru catalysts with a high loading (60 wt%) and uniform particle size of 2–3 nm were uniformly deposited on BCNTs; while 60 wt% Pt–Ru catalysts on CNTs resulted in significant agglomeration. The Pt–Ru/BCNT catalyst showed the highest activity on methanol oxidation in cyclic voltammetry and highest performance as the anode in a DMFC single cell. Such an enhancement was largely ascribed to an enhanced interaction of the introduced pentagon defects with Pt–Ru, which could promote a high loading and well dispersion of Pt–Ru catalysts and the charge transfer from Pt–Ru to the tubes.  相似文献   

18.
A new method was developed to prepare highly dispersed Pt nanoparticles on carbon black to use as proton exchange membrane (PEM) fuel cell catalysts. This method involves using a polymer, poly(vinylpyrrolidone) (PVP), to prevent particle aggregation and thereby reduce nanoparticle sizes to achieve high dispersion. It was found that Pt nanoparticles mediated by PVP are smaller than those obtained without PVP and have a narrower size distribution. Well-dispersed Pt nanoparticles with metal loadings from 5 to 35 wt % were obtained on carbon black (Vulcan XC-72R). It was found that well-dispersed Pt nanoparticles on carbon black could be synthesized at a PVP monomers-to-Pt atoms ratio of 0.1 under our experimental conditions. Larger amounts of PVP did not produce smaller nanoparticles, but rather reduced the Pt mass loading on carbon black. The morphology of the Pt nanoparticles that were supported on carbon black was characterized with transmission electron microscopy and X-ray diffraction. Their active surface areas were determined using cyclic voltammetry in a sulfuric acid solution. High Pt dispersion was obtained for the catalysts synthesized with PVP mediation, even at Pt loadings up to 35 wt %. The catalysts prepared with PVP mediation generally showed larger active specific areas than did those prepared without PVP.  相似文献   

19.
Heavily boron-doped diamond electrode has been applied as a robust substrate for Pt based catalyst. However, by simply applying a planar electrode the effective surface area of the catalyst is limited. In this article we for the first time prepared vertically aligned Pt-diamond core-shell nanowires electrode in a convenient and scalable method (up to 6-inch wafer size). The diamond nanowires are first fabricated with reactive ion etching with metal nanoparticles as etching masks. The following Pt deposition was achieved by DC sputtering. Different amounts of Pt were coated on to the nanowires and the morphology of the core-shell wires is characterized by SEM and TEM. The catalytic oxygen/hydrogen adsorption/desorption response are characterized by cyclic voltammetry. The results show that the active Pt surface area is 23 times higher than a planar Pt electrode, and 4.3 times higher than previously reported on Pt nanoparticles on diamond by electro-deposition. Moreover, this highly active surface is stable even after 1000 full surface oxidation and reduction cycles.  相似文献   

20.
制备了纳米碳材料负载铂的催化剂,通过N2吸附、TEM、XRD技术分别对载体的BET比表面积和催化剂结构、形貌和粒径大小进行了表征。考察了不同催化剂在环己烷脱氢反应中的催化性能以及温度对纳米碳颗粒负载铂催化剂活性的影响。结果表明,锚定在不同碳载体上的铂有较好的分散性,粒径较小,粒度分布范围较窄并且具有相同的晶型结构。孔状纳米碳颗粒负载铂催化剂的活性高于碳纳米管和高比表面的活性炭负载铂催化剂,并且在低温条件下已经显示了较高的活性,尤其是中空碳颗粒负载铂催化剂在环己烷脱氢反应中显示了好的活性和稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号