首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
以乙炔黑、活性炭、石墨粉与适量的Mn(NO3)2为原料,采用热压法制备氧电极,将其应用于光电催化降解水中苯酚的研究。采用BET、X射线衍射(XRD)及扫描电镜分析(SEM)测试技术对氧电极进行了表征,并考察了氧电极的制备条件对电极光电催化性能的影响,比较了铜片、镍片、氧电极3种不同阴极对苯酚的降解效果,也比较了相同操作条件下吸附、光催化、电催化、光电催化等过程对苯酚降解效果的影响。结果表明,氧电极的比表面积较大,主要晶相为石墨、Mn3O4,电极表面和内部的物料混合及气孔分布比较均匀;电极的较佳制备条件为:石墨、乙炔黑与活性炭的质量比1∶1∶1,烧结温度400℃,电极厚度1.0 mm;在降解水中苯酚的过程中,氧电极与光阳极能产生良好的光电协同效应,提高了水中苯酚的矿化率。  相似文献   

2.
氧电极催化剂及缓慢的阴极氧还原动力学是制约低温燃料电池商业化的关键瓶颈因素之一。为此,国内外研究者近年来从提高低温燃料电池氧电极催化剂的催化活性和稳定性、降低催化剂的成本、发展非贵金属氧还原催化剂等方面开展了大量的研究工作,有力地促进了低温燃料电池的发展进程。本文在简要介绍低温燃料电池氧电极反应机理的基础上,从催化剂载体、贵金属及其合金催化剂、金属大环化合物及M-N/C类催化剂和过渡金属硫族化合物类催化剂等方面详细综述了低温燃料电池氧电极催化剂近年来的主要研究进展,并指出了各类催化剂目前尚待解决的问题和发展方向。  相似文献   

3.
钙钛矿型氧化物电极极化过程中的导电特性   总被引:5,自引:0,他引:5  
研究了La_(0.5)Sr_(0.5)CoO_3等钙钛矿型氧化物电极的极化性质及它们对氧电化学还原的催化活性。发现在阴极极化过程中氧化物电极发生还原时,其电催化活性降低,电极阻抗明显增加,而在阳极极化过程中电极阻抗减小。讨论了影响钙钛矿型氧化物导电的因素及电极阻抗变化对电极性能的影响。  相似文献   

4.
以喷雾干燥微球化处理的偏钨酸铵作为前驱体,CO/H2为碳化还原气源,应用固定床气固反应法制备碳化钨(WC)粉体,再以聚四氟乙烯作粘结剂制成碳化钨电极.应用XRD和SEM等表征、观察碳化钨样品,循环伏安和线性扫描法研究硫酸电解液中WC电极的氧还原电催化行为.检测表明,WC为球状颗粒;WC电极对氧还原反应具有较好的电催化活性,硫酸溶液中溶解氧还原反应控制步骤为吸附态(O2-)ads的生成;增加硫酸电解液浓度,开路电位正移,升高温度有利于反应进行.  相似文献   

5.
本文研究了以不同炭材料为载体的氧电极开路电位。用旋转电极测得氧还原表观交换电流;量气法测得金属氧化物催化剂分解H_2O_2速度常数,流动气相色谱法测得炭载体的BET表面积。实验结果表明,一定的炭载体比表面,团粒结构小的催化剂分解H_2O_2速度常数大,催化剂与载体混合均匀,所得氧电极的开路电位越正。  相似文献   

6.
赖渊  周德璧  胡剑文  崔莉莉 《化学学报》2008,66(9):1015-1020
碳黑经过酸处理后再加入醋酸钴经氨气900 ℃热处理后, 以其制备的气体扩散电极在6 mol•L―1 KOH溶液中对氧还原反应(ORR)的电催化性能得到大大提高. XRD物相分析表明: 碳粉中加入醋酸钴经氨气热处理生成了氮化钴(Co5.47N). 通过极化曲线和交流阻抗方法对制备的气体扩散电极在空气中的性能进行了研究. 室温时在-0.2 V (vs. Hg/HgO)电位下, 未经处理的碳电极对氧还原基本没有电流产生; 用酸处理后的碳电极在空气中的电流密度提高到57 mA•cm―2; 而Co-N/C复合电极在同样条件下电流密度可达170 mA•cm―2, 交流阻抗显示氮化物的生成减小了氧还原反应的阻抗, 增强了对氧还原反应的电催化作用.  相似文献   

7.
IrO2-SnO2上氧析出机理   总被引:2,自引:0,他引:2  
本文研究IrO_2-SnO_2电极上氧析出过程的动力学和机理.实验得到,在所研究的电极上氧析出极化曲线的Tafel斜率约为75mV,H~+的反应级数为-0.75.此外,XPS结果证明研究电极表面Ir以+4价存在.根据实验结果提出IrO_2-SnO_2电极上氧析出过程的机理为:IrO_2+H_2O→IrO_2-OH+H~++cIrO_2-OH(?)IrO_2-O~-+(H~+)_sIrO_2-O~-(?)IrO_2-O+c2(IrO_2-O)(?)2IrO_2+O_2其中第一步为反应速度步骤(r.d.s.),(H~+)_s表示电极表面上的吸附质子。  相似文献   

8.
简述电化学电极气体氧分析器的计量检定方法及过程。给出了检定过程中测量误差的数学模型及电化学电极气体氧分析器计量标准不确定度的来源,并对各不确定度分量进行了评定。电化学电极气体氧分析器计量标准的扩展不确定度小于5%。  相似文献   

9.
PbO2—WC复合物阳极的研究   总被引:3,自引:0,他引:3  
采用复合电沉积技术制备了WC微粒弥散于PbO2中的PbO2WC复合电极,研究了相结构及在H2SO4介质中阳极析氧反应的性能。结果表明,与不含WC微粒的PbO2电极比较,WC微粒改变了PbO2电沉积的方式,复合电极的结晶更为细小和致密,α-PbO2的含量更高,晶体产生了择优取向,该复合电极在0.5mol/LH2SO4溶液中阳极析氧的电催化活性提高近1倍,其化学稳定性和电化学稳定性良好。  相似文献   

10.
RuO2电极的析氧活性研究   总被引:1,自引:0,他引:1  
本文用XPS, UPS和电化学方法研究了RuO2电极的活怀中心组成及其在电解过程中的变化。结果表明, RuO2电极的活性中心为氧结构空位。在电解过程中,表层的氧结构空位不断减少, 由于RuO2电极析氧反应区域不断扩展和深入, 又暴露出新的氧结构空位, 但电极外表面的氧结构空位对电极析氧活性影响较大, 外表面氧结构空位为RuO2电极有效的活性中心。此外, 电极的腐蚀和剥落也是导致活性降低的原因之一。  相似文献   

11.
Pt nanoparticles-loaded carbon black (CB) was prepared from Pt carbonyl cluster complexes, and had much narrower size distribution than commercial Pt nanoparticles/CB. In the former the monodispersed Pt nanoparticles were highly dispersed on CB without aggregation even at high Pt loading of 80 wt.%. Hydrodynamic voltammograms in O2-saturated 0.05 M H2SO4 solution at 30 °C showed that the onset potential of oxygen reduction reaction (ORR) current for the monodispersed Pt nanoparticles/CB electrode was more positive than that for a polycrystalline Pt electrode and similar to that for the commercial Pt nanoparticles/CB electrode. Moreover, the mass activity for ORR for the monodispersed Pt nanoparticles/CB electrode was ca. 4.9 times higher than that for the commercial Pt nanoparticles/CB electrode, clearly indicating that the control of size distribution of Pt nanoparticles is meaningful for reducing the Pt consumption.  相似文献   

12.
Multiwalled carbon nanotubes (MWCNTs) were grown on the fibers of a commercial porous carbon paper used as carbon-collecting electrodes in fuel cells. The tubes were then covered with Pt nanoparticles in order to test these gas diffusion electrodes (GDEs) for oxygen reduction in H2SO4 solution and in H2/O2 fuel cells. The Pt nanoparticles were characterized by cyclic voltammetry, transmission electron microscopy, and X-ray photoelectron spectroscopy. The majority of the Pt particles are 3 nm in size with a mean size of 4.1 nm. They have an electrochemically active surface area of 60 m2/g Pt for Pt loadings of 0.1-0.45 mg Pt/cm2. Although the electroactive Pt surface area is larger for commercial electrodes of similar loadings, Pt/MWCNT electrodes largely outperform the commercial electrode for the oxygen reduction reaction in GDE experiments using H2SO4 at pH 1. On the other hand, when the same electrodes are used as the cathode in a H2/O2 fuel cell, they perform only slightly better than the commercial electrodes in the potential range going from approximately 0.9 to approximately 0.7 V and have a lower performance at lower voltages.  相似文献   

13.
<正>Mesoporous carbon(MC) with surface area of 380 m~2/g was prepared and employed as the carbon support of Pt catalyst for counter electrode of dye-sensitized solar cells.Pt/MC samples containing 1 wt%Pt were prepared by reducing chloroplatinic acid on MC using wet impregnation.It was found that Pt nanoparticles were uniform in size and highly dispersed on MC supports.The average size of Pt nanoparticles is about 3.4 nm.Pt/MC electrodes were fabricated by coating Pt/MC samples on fluorine-doped tin oxide glass.The overall conversion efficiency of dye-sensitized solar cells with Pt/MC counter electrode is 6.62%,which is higher than that of the cells with conventional Pt counter electrode in the same conditions.  相似文献   

14.
A novel gas diffusion electrode using binary carbon supports (carbon nanotubes and active carbon) as the catalyst layer was prepared. The electrochemical properties for oxygen reduction reaction (ORR) in alkaline electrolyte were investigated by polarization curves and electrochemical impedance spectroscopy. The results show that the binary-support electrode exhibits higher electrocatalytic activity than the single-support electrode, and the best performance is obtained when the mass ratio of carbon nanotubes and activated carbon is 50 ∶50. The results from their electrode kinetic parameters indicate that the introduction of carbon nanotubes as a secondary support provides high accessible surface area, good electronic conductivity and fast ORR kinetics. The electrocatalytic activity of binary-support electrodes is obviously improved by the deposition of Pt nanoparticles on carbon nanotubes, even at very low Pt loading (45.7 μg/cm2). In addition, the EIS analysis results show that the process of ORR may be controlled by diffusion of oxygen in the thin film for binary-support electrodes with or without Pt catalyst.  相似文献   

15.
罗昪  周芬  潘牧 《高等学校化学学报》2022,43(4):20210853-86
层级多孔碳作为氧还原铂基催化剂载体的选择之一, 简单的旋转圆盘电极(RDE)验证此类催化剂具有较高的氧还原活性, 但几乎都缺少膜电极(MEA)性能验证, 实用性无法保证. 本文设计制备了基于聚苯胺的层级多孔碳(NHPC)载铂催化剂(Pt/NHPC850), 研究了其氧还原活性、 MEA质子传输和氧传输特性. RDE测试研究表明, Pt/NHPC850催化剂在低I/C(离聚物与碳载体质量比)时的面积活性低于实心碳载铂催化剂(Pt/XC-72), 但当I/C增大到与膜电极中一致时, 由于Nafion树脂对Pt催化剂的毒化作用增强, 其面积活性反而优于 Pt/XC-72. Pt/NHPC850催化剂的高Pt分散性及其优异的抗Nafion毒化性能, 使其在I/C为0.8时的质量活性为Pt/XC-72催化剂的1.34倍. MEA质子传输研究表明, 即使在高加湿条件下, Pt/NHPC850质子电阻率仍高达72.6 mΩ·cm2, 为Pt/XC-72的3倍. Pt/NHPC850制备的膜电极极化曲线在500 mA/cm2电流密度下性能迅速下降, Pt/NHPC850的氧增益电压达到144.4 mV, 比Pt/XC-72高56.7 mV. 表明Pt/NHPC850膜电极的质子传输和氧传输性能较差. 对比Pt/NHPC850催化剂的RDE和MEA的测试结果, 说明以层级多孔碳为载体的铂碳催化剂虽然耐Nafion毒化能力提高, 但是质子和氧气的氧传输性较差, 此类层级多孔碳还需进一步优化其结构, 才有可能满足低铂质子交换膜燃料电池(PEMFC)的应用需求.  相似文献   

16.
The active layer of the cathode of a hydrogen–oxygen fuel cell with a solid polymer electrolyte is computer simulated. The active mass of the electrode consists of substrate grains (agglomerates of carbon particles with Pt particles embedded into them) and grains of a solid polymer electrolyte (Nafion). The substrate grains presumably contain hydrophobic pores, which facilitate the oxygen penetration into the active mass. A calculation of characteristics of such an electrode focuses on the optimization of platinum weights. The principal parameters of the system are concentration and size of grains of substrate and Nafion, Pt concentration in substrate grains, average diameter of hydrophobic pores in substrate grains, and the electrode polarization. The optimum, at a given electrode polarization, electrochemical activity of the active layer, its thickness, and the platinum weight are calculated. A link between these quantities and principal parameters of the active layer is revealed.  相似文献   

17.
In this paper, we report the use of binary carbon supports (carbon nanotubes (CNTs) and active carbon) as a catalyst layer for fabricating gas diffusion electrodes. The electrocatalytic properties for the oxygen reduction reaction (ORR) were evaluated by polarization curves and electrochemical impedance spectroscopy (EIS) in an alkaline electrolyte. The binary-support electrode exhibits better performance than the single-support electrode, and the best performance is obtained when the mass ratio of carbon nanotubes and active carbon is 50:50. The results from the electrode kinetic parameters indicate that the introduction of carbon nanotubes as a secondary support provides high accessible surface area, good electronic conductivity, and fast ORR kinetics. Furthermore, the effect of CNT support on the electrocatalytic properties of Pt nanoparticles for binary-support electrodes was also investigated by different loading-reduction methods. The electrocatalytic activity of the binary-support electrodes is improved dramatically by Pt loading on CNT carbon support, even at very low Pt loading. Additionally, the EIS analysis results indicate that the process of ORR may be controlled by diffusion of oxygen in the electrode thin film for binary-support electrodes with or without Pt catalyst.  相似文献   

18.
碳纳米管电极上原位沉积Pt纳米颗粒   总被引:1,自引:0,他引:1  
 本文利用原位离子交换法制备了碳纳米管(CNTs)载铂(Pt/CNTs)电极. X射线光电子能谱分析表明, Pt通过离子交换载于电化学功能化的CNTs表面. 扫描电镜照片显示, Pt高度分散于CNTs表面. X射线衍射分析表明, Pt的粒径约为4.0 nm. 离子交换法所制Pt/CNTs电极的电化学表面积和Pt的利用率均大于传统Pt/CNTs电极(Pt粒径约为2.5 nm), 其对氧还原的催化活性高于传统电极. 这归因于离子交换法所制电极的特殊结构,即Pt普遍载于电化学活性位上.  相似文献   

19.
建立了一个新球型催化层微观结构模型, 并基于此模型对质子交换膜燃料电池(PEMFC)性能进行了模拟. 该模型中假设催化层由Pt/C 颗粒和离子聚合物-孔混合相组成. 假设Pt/C 颗粒为球形结构, 其直径符合正态分布, 用不同直径的球来表示随机分散在电极中的Pt/C 颗粒. 计算了催化层内的传递和电化学反应, 研究了质子和氧气及电化学反应速率在电极厚度方向上的分布, 并且通过对比氧气浓度、过电位和电化学反应速率的分布、极化曲线及催化剂利用率等证明了适当的电极厚度与Pt/C颗粒粒径有利于提高电池性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号