首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
We studied exchange coupling in the CoFe/Ru/CoFe synthetic antiferromagnetic structure with systematical replacement of the crystalline CoFe with amorphous CoFeB. Antiferromagnetic exchange coupling intensity decreases with an increase in the replacement in the bottom magnetic layer, which indicates that exchange coupling intensity could be tuned by the replacement. The origin of weakening antiferromagnetic exchange coupling is attributed to the amorphous CoFeB replacement inducing incomplete crystallization and disordered orientation in the Ru layer.  相似文献   

2.
Electronic structure and spin-related state coupling at ferromagnetic material(FM)/MgO(FM = Fe, CoFe, CoFeB)interfaces under biaxial strain are evaluated using the first-principles calculations. The CoFeB/MgO interface, which is superior to the Fe/MgO and CoFe/MgO interfaces, can markedly maintain stable and effective coupling channels for majorityspin ?_1 state under large biaxial strain. Bonding interactions between Fe, Co, and B atoms and the electron transfer between Bloch states are responsible for the redistribution of the majority-spin ?_1 state, directly influencing the coupling effect for the strained interfaces. Layer-projected wave function of the majority-spin ?_1 state suggests slower decay rate and more stable transport property in the CoFeB/MgO interface, which is expected to maintain a higher tunneling magnetoresistance(TMR) value under large biaxial strain. This work reveals the internal mechanism for the state coupling at strained FM/MgO interfaces. This study may provide some references to the design and manufacturing of magnetic tunnel junctions with high tunneling magnetoresistance effect.  相似文献   

3.
Bias voltage and temperature dependence of magneto-electric properties in double-barrier magnetic tunnel junctions(DBMTJs) with a structure of [IrMn/CoFe/Ru/CoFeB]/Al-O/CoFeB/Al-O/[CoFeB/Ru/CoFe/IrMn], have been investigated. The DBMTJs show a large tunnel magnetoresistance (TMR) ratio of up to 57.6%, a high V1/2 value of 1.26 V and small switching field Hc of 9.5 Oe at room temperature (RT). The TMR reaches the maximum at 30 K, about 89.0%, and decreases slightly from 30 to 4.2 K. A novel zero-bias anomaly (ZBA) in the P state is found and is temperature dependent, more sharply at low temperature, whereas a normal ZBA exists in the AP state. These effects are ascribed to magnon-, phonon- and impurity-assisted tunneling, and variation of density of states. The DBMTJ with a large TMR ratio, a high V1/2, and small switching field Hc is promising for developing the future spin electronic devices.  相似文献   

4.
MgO-based magnetic tunnel junctions (MTJs) with a layer sequence Ir22Mn78 or Fe50Mn50 (10 nm)/CoFe (2 nm)/Ru (0.85 nm)/CoFeB (0.5?t<2 nm)/MgO (2.5 nm)/CoFeB (3 nm) have been fabricated. The bias voltage dependence of tunneling magnetoresistance (TMR) is given as a function of the annealing temperature for these MTJs, which shows the TMR ratio changes its sign from inverted to normal at a critical bias voltage (VC) when an unbalanced synthetic antiferromagnetic stack CoFe/Ru/CoFeB is used. VCs change with the thickness of the pinned CoFeB and annealing temperature, which implies one can achieve different VCs by artificial control. The asymmetric VC values suggest that a strong density-of-states modification occurs at bottom oxide/ferromagnet interface.  相似文献   

5.
常远思  李刚  张颖  蔡建旺 《物理学报》2017,66(1):17502-017502
以CoFeB/MgO为核心单元的垂直各向异性薄膜体系和相关的垂直磁隧道结已获得广泛研究,其中CoFeB的B含量基本都保持为原子比20%.本文采用磁控溅射制备了Ta/(Co0.5Fe0.5)1-xBx/MgO三明治结构及生长顺序相反的系列薄膜,并在573—623K进行真空退火,研究了样品垂直各向异性随B成分的变化.结果显示,当B含量减小到10%时,Ta/CoFeB/MgO体系的垂直各向异性明显降低;相反,当B含量增加至30%时,该体系的垂直各向异性明显增强;发现在高B含量的情形下,样品的垂直各向异性大小与温度稳定性均与三明治结构的生长顺序密切相关;获得了具有优异温度稳定性的垂直磁化MgO/CoFeB/Ta样品.结果表明适当增加B含量是增强CoFeB/MgO体系垂直各向异性和温度稳定性的有效途径之一.  相似文献   

6.
MgO-based magnetic tunnel junctions were fabricated, with a thin pinned CoFeB layer in the unbalanced synthetic antiferromagnet part of the stack FeMn/CoFe/Ru/CoFeB. Inverted and normal tunneling magnetoresistance (TMR) values occur at low and high annealing temperatures (Ta), respectively. The TMR ratio remains inverted up to Ta=300 °C and it becomes normal around Ta=350 °C. The exchange bias of FeMn disappears at high Ta. The sign reversal of the TMR ratio is mainly attributed to the disappearance of the exchange bias due to manganese diffusion during the annealing process.  相似文献   

7.
Orientation dependences of ferromagnetic resonance in a MgO/CoFeB/MgO/Ta film with one ferromagnetic layer (monolayer) and in a MgO/CoFeB/Ta/CoFeB/MgO/Ta spin valve containing two single-crystal ferromagnetic CoFeB layers divided by a nonmagnetic Ta layer (bilayer) were investigated. Analysis of the orientation dependences of the structures with perpendicular magnetic anisotropy allowed calculating constants of magnetic anisotropy and damping factors. Physical reasons underlying the differences between these parameters in one- and two-layered structures are discussed.  相似文献   

8.
陈希  刘厚方  韩秀峰  姬扬 《物理学报》2013,62(13):137501-137501
本文详细研究了在不同氧化层和铁磁层厚度情况下, 底层CoFeB/AlOx/Ta结构和 顶层AlOx/CoFeB/Ta结构中的垂直磁各向异性. 在底层CoFeB/AlOx/Ta结构中观察到了垂直磁化的磁滞回线, 证明了其垂直易磁化效应的存在; 而在顶层AlOx/CoFeB/Ta结构中却没有观察到类似的磁滞回线. 对这种对称结构中的非对称现象进行了分析. 研究还发现不同的氧化层和铁磁层厚度均会影响层间界面相互作用的强度, 从而导致结构的垂直磁化曲线矫顽力大小发生改变. 这项研究将对基于AlOx氧化层垂直磁隧道结的研制具有重要的意义. 关键词: 垂直磁各向异性 磁隧道结 随机存储器  相似文献   

9.
In this study, the influences of thin film thickness and post-annealing process on the magnetic properties of CoFeB thin films were investigated. The angular dependency and linewidth of the ferromagnetic resonance signal were used to explore the magnetic behavior of sputtered single-layer and trilayer thin film stacks of CoFeB. A micromagnetic simulation model was employed based on the metropolis algorithm comprising the demagnetizing field and in-plane induced uniaxial anisotropy terms with all relevant contributions. Our results reveal that the direction of magnetization changes from in-plane to out-of-plane as a result of the annealing process and induces a perpendicular magnetic anisotropy in the 1-nm thick CoFeB thin film. The ferromagnetic resonance (FMR) linewidth can be defined well by the intrinsic Gilbert damping effect and the magnetic inhomogeneity contribution in both as-grown and annealed samples. The difference between the linewidths of the single and trilayer film is mainly caused by the spin pumping effect on damping which is associated with the interface layers.  相似文献   

10.
《Current Applied Physics》2018,18(11):1212-1217
The electric field-induced modifications of magnetic anisotropy in CoFeB/MgO systems are studied using X-ray resonant magnetic scattering and magneto-optical Kerr effect. Voltage dependent changes of the magnetic anisotropy of −12.7 fJ/Vm and −8.32 fJ/Vm are observed for Ta/CoFeB/MgO and Hf/CoFeB/MgO systems, respectively. This implies that the interfacial perpendicular magnetic anisotropy is reduced (enhanced) when electron density is increased (decreased). X-ray resonant magnetic scattering measurements reveal that the small in-plane magnetic component of the remanent state of CoFeB/MgO systems with weak magnetic anisotropy changes depending on the applied voltage leading to modification of the magnetic anisotropy at the CoFeB/MgO interface.  相似文献   

11.
CoxFe1−x nanowire arrays with various diameters and different composition were fabricated by ac electrodeposition using porous alumina template. Coercivity along the easy axis reaches to a maximum at 2330 Oe, for CoxFe1−x nanowires containing about 40 at% Co. The crystalline structure of the nanowires was concentration-independent and shows a bcc structure. The critical diameter for transition from coherent rotation to curling mode is 35 nm for CoFe containing less than 40 at% Co while it is 30 nm for those with more than 40 at% Co. Optimizing the magnetic properties of CoFe with different Co content was seen to be dependent on the diameter of nanowires. For 25 nm diameter, the optimum was shown below 50 at% Co while it was seen above 50 at% for nanowires with 50 nm diameter. The angular dependence of the coercivity with nanowires diameter were also studied.  相似文献   

12.
To study the influence of CoFeB/MgO interface on tunneling magnetoresistance(TMR),different structures of magnetic tunnel junctions(MTJs) are successfully prepared by the magnetron sputtering technique and characterized by atomic force microscopy,a physical property measurement system,x-ray photoelectron spectroscopy,and transmission electron microscopy.The experimental results show that TMR of the CoFeB/Mg/MgO/CoFeB structure is evidently improved in comparison with the CoFeB/MgO/CoFeB structure because the inserted Mg layer prevents Fe-oxide formation at the CoFeB/MgO interface,which occurs in CoFeB/MgO/CoFeB MTJs.The inherent properties of the CoFeB/MgO/CoFeB,CoFeB/Fe-oxide/MgO/CoFeB and CoFeB/Mg/MgO/CoFeB MTJs are simulated by using the theories of density functions and non-equilibrium Green functions.The simulated results demonstrate that TMR of CoFeB/Fe-oxide/MgO/CoFeB MTJs is severely decreased and is only half the value of the CoFeB/Mg/MgO/CoFeB MTJs.Based on the experimental results and theoretical analysis,it is believed that in CoFeB/MgO/CoFeB MTJs,the interface oxidation of the CoFeB layer is the main reason to cause a remarkable reduction of TMR,and the inserted Mg layer may play an important role in protecting Fe atoms from oxidation,and then increasing TMR.  相似文献   

13.
刘娜  王海  朱涛 《物理学报》2012,61(16):167504-167504
具有垂直磁各向异性的磁性纳米结构是自旋转移力矩器件的重要研究内容, 本文采用反常霍尔效应系统地研究了磁控溅射法制备的[CoFeB/Pt]n多层膜的垂直磁各向异性. 当CoFeB的厚度小于0.6 nm时, 可以在[CoFeB/Pt]n多层膜中观察到清晰的垂直磁各向异性, 其垂直磁各向异性强烈依赖于CoFeB和Pt层厚度及多层膜周期数. 当多层膜周期数n ≥ 5时, 出现零剩磁现象. 另外, [CoFeB/Pt]n多层膜的矫顽力均小于2 kA·m-1, 有望作为垂直自由层的重要侯选材料应用于垂直磁纳米结构中.  相似文献   

14.
Negative magnetoresistance modifying the quality factor of a microwave cavity under the magnetization switching of ferromagnetic layers has been discovered in a MgO/CoFeB/MgO/Ta film with a single ferromagnetic layer and a MgO/CoFeB/Ta/CoFeB/MgO/Ta spin valve consisting of two ferromagnetic CoFeB layers. The dependence of the first derivative dP/dH of the microwave absorption signal on the dc magnetic field of the spectrometer exactly reproduce the magnetic hysteresis loops of the sample. The slope of these dependences and the amplitude of dP/dH jumps under remagnetization of the layers are determined by the interplay of a negative magnetoresistance of individual layers and a positive giant magnetoresistance of the entire multilayer structure. The discovered phenomenon allows using microwave absorption for making a high-sensitivity contact-free indicator of the basic magnetization states of a spin valve.  相似文献   

15.
Qingrong Shao 《中国物理 B》2022,31(8):87503-087503
Exchange coupling across the interface between a ferromagnetic (FM) layer and an antiferromagnetic (AFM) or another FM layer may induce a unidirectional magnetic anisotropy and/or a uniaxial magnetic anisotropy, which has been extensively studied due to the important application in magnetic materials and devices. In this work, we observed a fourfold magnetic anisotropy in amorphous CoFeB layer when exchange coupling to an adjacent FeRh layer which is epitaxially grown on an SrTiO3(001) substrate. As the temperature rises from 300 K to 400 K, FeRh film undergoes a phase transition from AFM to FM phase, the induced fourfold magnetic anisotropy in the CoFeB layer switches the orientation from the FeRh$\langle 110\rangle $ to FeRh$\langle 100\rangle $ directions and the strength is obviously reduced. In addition, the effective magnetic damping as well as the two-magnon scattering of the CoFeB/FeRh bilayer also remarkably increase with the occurrence of magnetic phase transition of FeRh. No exchange bias is observed in the bilayer even when FeRh is in the nominal AFM state, which is probably because the residual FM FeRh moments located at the interface can well separate the exchange coupling between the below pinned FeRh moments and the CoFeB moments.  相似文献   

16.
In this work, the magnetic and microstructural properties of CoPt nanowires are presented as a function of the electrolyte pH and current density during electrodeposition into anodized alumina templates. CoPt nanowires of high aspect ratio have been prepared using electrolyte pH values in the range from 2 to 6. The as-made samples exhibit a face centered cubic (fcc) structure with soft magnetic properties which transform into the face centered tetragonal (fct) L10 phase after thermal treatment. Different pH values of the electrolyte during electrodeposition lead to significantly different microstructures and, therefore, different magnetic properties. The CoPt nanowires prepared at high pH value are composed of fcc nanorods of about 25 nm in length. Thermal annealing of these samples leads to a preferred (0 0 1) orientation (along the direction perpendicular to the direction of nanowires) which increases with annealing time. On the other hand, the CoPt nanowires prepared at lower pH value are composed of uniform fcc nanograins with the size ∼2−3 nm. Magnetization curves for the later sample are virtually identical in both directions indicating an isotropic behavior.  相似文献   

17.
Our recent research achievements in the perpendicular magnetic anisotropy (PMA) properties of the CoFeB sand- wiched by MgO and tantalum layers are summarized. We found that the PMA behaviors of Ta/CoFeB/MgO and MgO/CoFeB/Ta thin films are different. The larger PMA in the latter film is related to the lower magnetization of CoFeB deposited on MgO. Furthermore, we have demonstrated a large anomalous Hall effect in perpendicular CoFeB thin fihn. Our results show large anomalous Hall resistivity, large longitudinal resistivity, and low switching field can be achieved, all at the same time, in the perpendicular CoFeB thin film. Anomalous Hall effect with high and linear sensitivity is also found in an MgO/CoFeBFFa thin film with a thick MgO layer, which opens a door tbr future device applications of perpendicular ferromagnetic thin films.  相似文献   

18.
刘毅  朱开贵  钟汇才  朱正勇  于涛  马苏德 《中国物理 B》2016,25(11):117805-117805
A detailed study of the magnetic characterizations of the top structure MgO/CoFeB/Mo is presented.The samples show strong perpendicular magnetic anisotropy(PMA) when the thickness of CoFeB is 0.9 nm and 1.1 nm.The saturation magnetic moment and interface anisotropy constant are 1566 emu/cm~3 and 3.75 erg/cm~2,respectively.The magnetic dead layer(MDL) is about 0.23 nm in this system.Furthermore,strong capping layer thickness dependence is also observed.The strong PMA of 1.1 nm CoFeB only exists in a Mo cap layer thickness window of 1.2-2 nm.To maintain PMA,the metal layer could not be too thin or thick in these multilayers.The oxidation and diffusion of the metal capping layer should be respectively responsibility for the degradation of PMA in these thin or thick metal capping layer samples.  相似文献   

19.
《Current Applied Physics》2015,15(8):902-905
The planar Hall effect (PHE) in W/CoFeB/MgO structure with perpendicular magnetic anisotropy was investigated as a function of CoFeB thickness (tCoFeB). The PHE is measured by sweeping the in-plane magnetic field at various azimuthal angles as well as by rotating strong magnetic field which is enough to saturate the magnetization. We observed a huge PHE in the W/CoFeB/MgO sample, which is even larger than anomalous Hall effect (AHE). This is distinct from the results in Ta/CoFeB/MgO samples showing a much smaller PHE than AHE. Since the PHE is insensitive to the tCoFeB while the AHE is proportional to the tCoFeB, the unprecedented PHE can be attributed to the W layer with a large spin-orbit coupling.  相似文献   

20.
The crystallization characteristics of a middle CoFeB free layer in a magnetic tunnel junction (MTJ) with double MgO barriers were investigated by tunneling magnetoresistance (TMR) measurements of patterned cells across an 8-inch wafer. The MTJ structure was designed to have two CoFeB free layers and one bottom pinned layer, separated by MgO tunnel barriers. The observed resistance showed three types of TMR curves depending on the crystallization of the middle CoFeB layer. From the analysis of TMR curves, coherent crystallization of the middle CoFeB layer with the top and bottom MgO barriers was found to occur non-uniformly: About 80% of the MTJ cells in the wafer exhibited coherent crystallization of the middle CoFeB layers with the bottom MgO tunnel barrier, while others had coherent crystallization with the top MgO tunnel barrier or both barriers. This non-uniform crystallization of the middle CoFeB layer in a double MTJ was also clearly observed in tunneling electron microscopy images. Thus, control of the crystallization of the middle CoFeB layer is important for optimizing the MTJ with double MgO barriers, and especially for the fabrication of double barrier MTJ on a large area substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号