首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Four paste mixtures with varying replacement level of the cement content by fly ash have been studied. Due to fly ash, the acceleration period decreased and a third hydration peak was noticed with isothermal calorimetry. The total heat after 7 days increased with increasing fly ash content. From 1 to 7 days, thermogravimetry showed a higher chemically bound water and Ca(OH)2-content for the pastes with fly ash. Between 7 and 14 days the calcium hydroxide started to be depleted due to the pozzolanic reaction. A unique relation was found between calcium hydroxide and total heat development.  相似文献   

2.
The difference among the effects of high-temperature curing on the early hydration properties of the pure cement, the binder containing fly ash, the binder containing GGBS, and the binder containing steel slag was investigated by determining the compressive strength, non-evaporable water content, hydration heat, and Ca(OH)2 content. Results show that the order of the influence degrees of high-temperature on the early hydration of different binders is the binder containing GGBS > the binder containing steel slag > the binder containing fly ash > the pure cement. In the case of short period of high-temperature curing (only 1 day), the strength growth rate of the concrete containing GGBS is the greatest. Though the influence of increasing high-temperature curing period on the hydration degree of the binder containing fly ash is not the most significant, the strength growth rate of the concrete containing fly ash is the most significant due to the excessive consumption of Ca(OH)2 by reaction of fly ash. In the case of high-temperature curing, the Ca(OH)2 content of the paste containing steel slag is much higher than those of the paste containing GGBS and the paste containing fly ash, so though high-temperature curing promotes the hydration of the binder containing steel slag significantly, its influence on the strength growth rate of the concrete containing steel slag is not so significant.  相似文献   

3.
This article demonstrates the possibility of producing alkali-activated hybrid cements based on fly ash (FA), and construction and demolition wastes (concrete waste, COW; ceramic waste, CEW; and masonry waste, MAW) using sodium sulfate (Na2SO4) (2–6%) and sodium carbonate (Na2CO3) (5–10%) as activators. From a mixture of COW, CEW, and MAW in equal proportions (33.33%), a new precursor called CDW was generated. The precursors were mixed with ordinary Portland cement (OPC) (10–30%). Curing of the materials was performed at room temperature (25 °C). The hybrid cements activated with Na2SO4 reached compressive strengths of up to 31 MPa at 28 days of curing, and the hybrid cements activated with Na2CO3 yielded compressive strengths of up to 22 MPa. Based on their mechanical performance, the optimal mixtures were selected: FA/30OPC-4%Na2SO4, CDW/30OPC-4%Na2SO4, FA/30OPC-10%Na2CO3, and CDW/30OPC-10%Na2CO3. At prolonged ages (180 days), these mixtures reached compressive strength values similar to those reported for pastes based on 100% OPC. A notable advantage is the reduction of the heat of the reaction, which can be reduced by up to 10 times relative to that reported for the hydration of Portland cement. These results show the feasibility of manufacturing alkaline-activated hybrid cements using alternative activators with a lower environmental impact.  相似文献   

4.
This paper analyzes the effect of fly ash chemical character on early Portland cement hydration and the possible adverse effects generated by the addition of gypsum. Behaviour was analyzed for pure Portland cements with varying mineralogical compositions and two types of fly ash, likewise differing in chemical composition, which were previously characterized under sulphate attack as: silicic-ferric-aluminic or aluminic-silicic ash in chemical character, irrespective if they are in nature, siliceous or siliceous and aluminous materials according to the ASTM C 618-94a. The experimental results showed that water demand for paste with a normal consistency increased with the replacement ratio in fly ash with a more aluminic than silicic chemical character, whereas it declined when silicic-ferric-aluminic ash was used. On the other hand, the differences between the total heat of hydration released at the first valley and the second peak also clearly differentiated the two types of ash. While the relative differences increased in the more aluminic than silicic ash, they declined in the more silicic than aluminic. In another vein, the findings indicate that within a comparable Blaine fineness range, the reactive alumina (Al2O3r−) content in pozzolanic additions has a greater effect on mortar strength than the reactive silica (SiO2r−) content, at least in early ages up to 28 days. Finally, the adverse effect generated in the presence of excess gypsum is due primarily to the chemical interaction between the gypsum and the C3A in the Portland cement and the reactive alumina (Al2O3r−) in the fly ash.  相似文献   

5.
A Brazilian coal power plant generates a waste composed by the fly and bottom ashes produced from coal combustion and by a spent sulfated lime generated after SO2 capture from combustion gases. This work presents a study of the early stages of the hydration of composites formed by this waste and a type II Portland cement, which will be used for CO2 capture. The cement substitution degrees in the evaluated composites were 10, 20, 30 and 40%, and the effect of the coal power unit waste on the hydration reaction was analyzed on real time by NCDTA, during the first 40 h of hydration. The results show that the higher is the substitution degree, the higher is the retarding effect on the cement hydration process. Actually, by respective thermogravimetric (TG) and derivative thermogravimetric (DTG) analysis on initial cement mass basis, this effect is caused by double exchange reactions among Ca and Mg components of the waste, during the first 4 h of hydration, which promote a much higher exothermic effect in the NCDTA curve, simultaneously to respective induction periods. The pozzolanic reactions, due to the presence of the waste silica and alumina containing amorphous phases, consume part of the original Ca(OH)2 content existent in the waste in the case of 30 and 40% substituted pastes, and also from part of the Ca(OH)2 produced in cement hydration reactions, in the case of the 10 and 20% substituted pastes.  相似文献   

6.
Heat Evolution in Hydrated Cementitious Systems Admixtured with Fly Ash   总被引:2,自引:0,他引:2  
In this study a calorimeter was applied to investigate the hydration of cements with fly ash (pulverised fuel ash – PFA) admixture. Four cements were used to produce the binders containing from 5 to 60% fly ash. The process of hydration in cementitious systems with fly ashes is slower than in reference pastes without admixtures. However, the calorimetric calculations and the shape of heat evolution curves seem to indicate a complex interaction between the components of cement and ash resulting in the increasing total heat evolved values per unit of cement. At higher fly ash content the accelerating effect of alkalis and alumina should be taken into account and discussed in terms of the composition of initial cement. The modifications of hydration kinetics and mechanism in this case is very well visualised by means of calorimetry. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The heat of hydration evolution of eight paste mixtures of various water to binder ratio and containing various pozzolanic (silica fume, fly ash) and latent hydraulic (granulated blast furnace slag) admixtures have been studied by means of isothermal calorimetry during the first 7 days of the hydration process and by means of solution calorimetry for up to 120 days. The results of early heat of hydration values obtained by both methods are comparable in case of the samples without mineral admixtures; the values obtained for samples containing fly ash and granulated blast furnace slag differ though. The results from isothermal calorimetry show an acceleration of the hydration process by the presence of the fine particles of silica fume and retarding action of other mineral admixtures and superplasticizer. The influence of the presence of mineral admixtures on higher heat development (expressed as joules per gram of cement in mixture) becomes apparent after 20 h in case of fly ash without superplasticizer and after 48 h for sample containing fly ash and superplasticizer. In case of samples containing slag and superplasticizer the delay observed was 40 h. The results obtained by solution calorimetry provide a good complement to the ones of isothermal calorimetry, as the solution calorimetry enables to study the contribution of the mineral admixtures to the hydration heat development at later ages of the hydration process, which is otherwise hard to obtain by different methods.  相似文献   

8.
The hydration products of 2.5, 5 and 10% Cl containing metakaolin (MK)-lime pastes are compared with the same obtained from MK-lime paste to understand the chloride binding behaviour of MK during the hydration of cement. Results indicate that 2.5% Cl addition into the MK-lime paste initially enhances the formation of Friedel's salt (Ca2Al(OH)6Cl·2H2O), but Friedel's salt decomposes at later stages due to the formation of stratlingite (C2ASH8). In 5 and 10% chloride containing pastes, Friedel's salt is observed throughout the reaction periods along with the high amount of CSH. Small amount of stratlingite is also formed on or after 60 day hydration of 5% Cl containing MK-lime pastes. On the other hand, MK-lime-10% Cl containing pastes show the complete absence of stratlingite and C4AH13 through out the hydration period, which are the major hydration products of MK-lime paste. Mesuarements of pH of the simulated pore fliuds help to understand the decomposition behaviour of Friedel's salt. From the experimental results, chloride binding mechanism of MK-lime paste is also discussed.  相似文献   

9.

Comparison of the influence of temperature and different alkali activators on the reactivity of two types of fly ash (conventional, fluidized) was presented. The main emphasis was put on fluidized fly ash as potential component of binding mixtures containing low amount of cement. Conventional fly ash was used as a reference. It was found that for these materials the key differences affecting products of activation are: availability of calcium and sulfate ions as well as structure of fly ash grains influencing dissolution of aluminate and silicate species. Fluidized fly ash, contrary to conventional fly ash, undergoes reaction in 0.1 M solutions of hydroxides forming mainly ettringite. In the case of 4 M hydroxides, both fly ashes undergo hydration processes. Conventional fly ash formed mainly amorphous aluminosilicate gel, while fluidized fly ash may create zeolitic products especially in the case of elevated temperature of early hydration. Sulfate and alkali ions can be incorporated into aluminosilicate structure of new formed products; however, this process depends strictly on the type of used hydroxide and its concentration. The presence of Ca(OH)2, carbonates and alkali sulfates was also registered in the case of hydrated fluidized fly ash.

  相似文献   

10.
This work analyzes the effect of the presence of 5 wt.% of solid sodium salts (Na2SO4, Na2CO3, and Na2SiO3) on calcium sulfoaluminate cement (CSA) hydration, addresses hydration kinetics; 2-, 28-, and 90-d mechanical strength, and reaction product microstructure (with X-ray diffraction (XRD), and Fourier transform infrared spectroscopy, (FTIR). The findings show that the anions affect primarily the reactions involved. Ettringite and AH3, are the majority hydration products, while monosulfates are absent in all of the samples. All three salts hasten CSA hydration and raise the amount of ettringite formed. Na2SO4 induces cracking in the ≥28-d pastes due to post-hardening gypsum and ettringite formation from the excess SO42– present. Anhydrite dissolves more rapidly in the presence of Na2CO3, prompting carbonation. Na2SiO3 raises compressive strength and exhibits strätlingite as one of its reaction products.  相似文献   

11.

The influence of phosphate slag with different finenesses and activators on the hydration of high-belite cement has been studied by using the hydration heat of binders, the DTA curves, the SEM images, and the specific strength. Results indicated that doped phosphorus slag in the cement will reduce heat of hydration. The activity of phosphate slag was low at early stage, but pozzolanic activity of phosphorus slag is higher than that of fly ash. Increasing the specific surface area and curing time and using Ca(OH)2 combined with gypsum can clearly promote the hydration degree of phosphorus slag. The findings in this paper show that since phosphorus slag can promote the hydration of high-belite cement, the strength contribution of cement is increased. Moreover, the greater the specific surface area is, the more significant the promotion effect at 90 d is.

  相似文献   

12.
The hydration properties of the binder containing low quality fly ash or limestone powder were compared in this study. Isothermal calorimetry was performed to measure the hydration heat of the binders during the first 3 days. Mercury intrusion porosimetry, scanning electron microscope, and thermogravimetry–differential thermal analysis were all used to determine the pore structure and hydration products of paste. The compressive strength of the pastes of age 3, 7, 28, and 90 days was also tested. The results indicate that the ground low quality fly ash can improve the mechanical properties of composite cementitious material and ameliorate the hydration properties and microstructure compared with the inert admixture limestone powder. The chemical activity of low quality fly ash presents gradually and appears high pozzolanic effect at later period, and it can accelerate the generation of hydration products containing more chemically bonded water. This leads to the higher rate of strength growth and cement hydration degree, the more compact microstructure and reasonable pore size distribution. Additionally, low quality fly ash delays the induction period, but shortens the acceleration period, therefore there is no significant influence on the second exothermic peak occurrence time.  相似文献   

13.
DTA/TG thermoanalytical investigations and X-ray diffractometry were carried out which demonstrate the effect of MSW fly ash on the hydration reactions of pozzolanic cement. The MSW fly ash has high content of calcium sulphate, alkali chlorides and heavy metals. During the first curing period the calcium aluminate reacts with the sulphate to form ettringite. In that period also the presence of syngenite is noted in the pastes. With the growth of the fly ash content of the mixture there is a lengthening of the period in which the hydration reactions of the calcium silicates are inhibited. Subsequently with the progress of hydration in the pastes the CSH phase develops and the formation of calcium chloroaluminate phase is observed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The capture of CO2 and SO2 from industrial gas effluents has been done usually by lime-containing products. For this purpose, cement pastes also can be used, due mainly to their calcium hydroxide content formed during hydration. To select the best cement for this purpose, TG and DTG curves of different Portland cement pastes (types I, II, III and G), prepared with a water-to-cement ratio (W/C) equal to 0.5, were analyzed at different ages, at same operating conditions. The curves were transformed into respective cement calcined and initial mass basis, to have a common and same composition reference basis, for a correct quantitative hydration data comparison. This procedure also shows that there is an unavoidable partial drying effect of the pastes before starting their analysis, which randomly decreases the W/C ratio at which were prepared, which indicates that, when results are compared on respective paste initial mass basis, assuming that the ratio W/C has not changed, possible calculation errors may be done. Type I, II and G analyzed cements have shown similar hydration characteristics as a function of time, while the analyzed type III cement has shown a different hydration behavior, mainly due to its highest Al2O3 and lowest SO3 contents, promoting the formation of hydrated calcium aluminates, by the pozzolanic action of the excess of alumina, consuming Ca(OH)2, which final content at 28 days was the lowest one, among the hydrated cements.  相似文献   

15.
This research provides a fundamental understanding of the early stage hydration of Portland cement paste, tricalcium aluminate (C3A) paste at water to cement ratio of 0.5 and C3A suspension at water to cement ratio of 5.0 modified by 2 or 4 mass% of sodium carbonate. A high conversion of unreacted clinker minerals to gel-like hydration products in the cement-Na2CO3 pastes takes place rapidly between 1st to 24th h. Contrary the Ca(OH)2 formation within the same time interval is retarded in the excess of CO32− ions due to intensive rise and growth of CaCO3 crystals in hydrated cement. Later, the conversion of clinker minerals to the hydrate phase is reduced and higher contents of calcite and vaterite relative to that of Ca(OH)2 in comparison with those found in the Portland cement paste are observed. As a consequence a decrease in strength and an increase in porosity between hardened Portland cement paste without sodium carbonate and those modified by Na2CO3 are observed. C3A hydrates very quickly with sodium carbonate between 1st and 24th h forming hydration products rich in bound water and characterized also by complex salts of (x)C3A·(y)CO2·(zH2O type, whereas C3A-H2O system offers C3AH6 as the main hydration product. Higher content of the formed calcium aluminate hydrates in C3A-Na2CO3-H2O system also contributes to early strength increase of Portland cement paste.  相似文献   

16.
Mixtures of mud with various additives were studied to explain the reasons for the change in geotechnical properties. The additives were: lime, cement, fly ash, water-glass containing either Na2CO3 or CaCl2 and phosphogypsum. An increase in strength was usually associated with increase of weight loss, both on static or dynamic heating. An exothermic peak occurred between 420°C and 490°C., being especially high in the presence of water -glass, together with CaCl2. XRD indicated an increase in calcite content and the possible formation of calcium aluminate silicate hydrate. SEM showed a non-homogeneous microstructure and big pores in case of mixtures of low strength (water-glass addition). A homogeneous aggregated structure was obtained in the case of higher strength (fly ash, phosphogypsum).  相似文献   

17.
Prediction and control of concrete temperature rise due to cement hydration is of great significance for mass concrete structures since large temperature gradients between the surface and the core of the structure can lead to cracking thus reducing durability of the structure. Cement replacement with supplementary cementitious materials (SCMs) is frequently used to reduce the concrete temperature rise. Several models have been proposed for predicting heat release of blended cements; however, none of them address incorporation of metakaolin into the mixture. Isothermal calorimetry measurements, based on statistical experimental design, were taken on pastes incorporating combinations of SCMs and chemical admixtures. The data were then used to develop equations to predict the total heat reduction with the incorporation of chemical admixtures and SCMs. Analysis of the calorimetry data indicated that chemical admixtures do not have a significant effect on heat evolution beyond 12 h. SCMs investigated in this study (fly ash, slag, silica fume and metakaolin), on the other hand, were found to have a significant effect at hydration ages of 12, 24, 48 and 72 h.  相似文献   

18.
A lime-pozzolan cement was used to make pastes containing different quantities of MSW fly ash. After setting, the pastes were cured in water at room temperature from 1 h to 260 days. The hydration characteristics and the nature of the hydration products of the various pastes were studied by simultaneous TG/DSC thermal analysis and X-ray diffractometry. The MSW fly ash was found to induce a slowing of the hydration process in lime-pozzolan pastes, and after some days an evident acceleration of hydration reactions occurred. Sulphate and chloride in the MSW fly ash yield hydration products forming a cementitious matrix.The author is grateful to D. Calabrese for assistance with the thermal and XRD analyses.  相似文献   

19.
Owing to poor bonding between coarse fly ash particles and hydration products, gap-graded blended cements with fly ash usually show lower compressive strengths than Portland cement. Surface cementitious properties of coarse fly ash were improved by dehydration and rehydration processes in the present study. The results show that during the calcination at 750?°C, C?CS?CH gel is mainly transformed into a new nesosilicate, which is similar to a less crystalline C2S. The formation of melilite from hydration products is also noticed at 900?°C, however, this will not contribute to rehydration of calcined fly ash. Rehydration of new generated nesosilicate on the surface of coarse fly ash leads to a better bonding between coarse fly ash particles and hydration products. As a result, both early and late mechanical properties of gap-graded blended cements containing 25% cement clinker and 39% calcined coarse fly ash are higher than those of 100% Portland cements.  相似文献   

20.
Binders containing large amounts of cement substitutes have been a subject of interest for many years because of the possibility to reduce the amount of cement in concrete, and in consequence decrease negative influence of cement production on natural environment. In this work, studies related to hydration of binders where 80 % of cement was substituted by blended pozzolana were carried out. The aim of this work was to investigate activation of fly ash–cement system by addition of spent aluminosilicate catalyst, using calorimetry and thermal analysis as main methods of investigations. It was demonstrated that spent fine-grained fluidised catalytic cracking catalyst acts acceleratingly on early hydration of binder. It seems to be beneficial to use up to 10 mass% of this spent catalyst. Higher amounts may cause changes in the mechanism of early hydration. Because Ca(OH)2 in such systems is quickly consumed due to pozzolanic reaction it seems beneficial to modify composition of binders by introducing additional amounts of Ca(OH)2 or cement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号