首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Possibilities of a multicell isoperibolic-semiadiabatic calorimeter application for the measurement of hydration heat and maximum temperature reached in mixtures of various compositions during their setting and early stages of hardening are presented. Measurements were aimed to determine the impact of selected components?? content on the course of ordinary Portland cement (OPC) hydration. The following components were selected for the determination of the hydration behaviour in mixtures: very finely ground granulated blast furnace slag (GBFS), silica fume (microsilica, SF), finely ground quartz sand (FGQ), and calcined bauxite (CB). A commercial polycarboxylate type superplasticizer was also added to the selected mixtures. All maximum temperatures measured for selected mineral components were lower than that reached for cement. The maximum temperature increased with the decreasing amount of components in the mixture for all components except for silica fume. For all components, except for CB, the values of total released heat were higher than those for pure Portland cement samples.  相似文献   

2.
The properties of high-strength concrete under standard curing condition (20 °C, 95% RH), high-temperature curing condition (50 °C) and temperature match curing condition were comparatively investigated. The cumulative hydration heat of composite binder containing fly ash and silica fume is lower than that of composite binder containing the same amount of slag. Addition of fly ash and silica fume clearly reduces the adiabatic temperature rise of concrete, but adding slag leads to higher adiabatic temperature rise than Portland cement concrete. High-temperature curing condition and temperature match curing condition lead to the sustainable increase in compressive strength of concrete containing mineral admixture, but they hinder the later-age strength development of Portland cement concrete. For cement–slag paste and cement–fly ash–silica fume paste, the non-evaporable water contents increase significantly and the pore structures are much finer under high-temperature curing condition and temperature match curing condition, which negatively affect the pore structure of Portland cement paste. The differences in properties of concrete among three curing conditions become smaller with time. The properties obtained under standard curing condition can approximately reflect the long-term properties of high-strength concrete in the real structure. The concrete prepared with cement–fly ash–silica fume composite binder has the highest compressive strength, finest pore structure and best resistance to chloride permeability under any curing condition. This composite binder is very suitable to prepare the high-strength concrete with large volume.  相似文献   

3.
Prediction and control of concrete temperature rise due to cement hydration is of great significance for mass concrete structures since large temperature gradients between the surface and the core of the structure can lead to cracking thus reducing durability of the structure. Cement replacement with supplementary cementitious materials (SCMs) is frequently used to reduce the concrete temperature rise. Several models have been proposed for predicting heat release of blended cements; however, none of them address incorporation of metakaolin into the mixture. Isothermal calorimetry measurements, based on statistical experimental design, were taken on pastes incorporating combinations of SCMs and chemical admixtures. The data were then used to develop equations to predict the total heat reduction with the incorporation of chemical admixtures and SCMs. Analysis of the calorimetry data indicated that chemical admixtures do not have a significant effect on heat evolution beyond 12 h. SCMs investigated in this study (fly ash, slag, silica fume and metakaolin), on the other hand, were found to have a significant effect at hydration ages of 12, 24, 48 and 72 h.  相似文献   

4.

Portland cement was partially replaced by metakaolin (MK), silica fume (SF) and ground granulated blast-furnace slag (BFS). Globally, two amounts of SF (5 and 10 mass%) and total substitution level of 35 mass% were used to prepare blended samples. Their early and 28 days hydration was studied by means of isothermal calorimetry and thermal analysis. Developed phase composition was assessed using compressive strength measurements. Acceleration of cement hydration in early times was proved and reflected higher amounts of finer additives. Despite dilution effect, the presence of more reactive SF and MK resulted in pozzolanic reactions manifesting already before 2 days of curing and contributing to the formation of strength possessing phases. The influence of BFS addition showed later and thanks to the synergic effect of all the used additives; it was possible to increase its content up to 25 mass% by keeping the compressive strength values near that of referential one.

  相似文献   

5.

Present study deals with the influence of metakaolin (MK), silica fume (SF) and ground granulated blast-furnace slag (BFS) on middle hydration of ordinary Portland cement replaced by 45 mass% of particular supplementary cementitious materials (SCMs). Acceleration of cement hydration by SF and MK was proved up to the first 12 h by isothermal calorimetry as well as by thermogravimetric analyses. From the beginning of deceleratory period, when SCMs stopped to act as accelerators, more evident influence of the dilution effect was observed. Nevertheless, the presence of pozzolanic reactions was demonstrated already after 15 h of curing and even when SF and MK were used in the amount equal to 5 mass%. Synergic effect of the used SCMs allowed to increase the quantity of BFS up to 35 mass% without significant changes in their positive action.

  相似文献   

6.
Heat Evolution in Hydrated Cementitious Systems Admixtured with Fly Ash   总被引:2,自引:0,他引:2  
In this study a calorimeter was applied to investigate the hydration of cements with fly ash (pulverised fuel ash – PFA) admixture. Four cements were used to produce the binders containing from 5 to 60% fly ash. The process of hydration in cementitious systems with fly ashes is slower than in reference pastes without admixtures. However, the calorimetric calculations and the shape of heat evolution curves seem to indicate a complex interaction between the components of cement and ash resulting in the increasing total heat evolved values per unit of cement. At higher fly ash content the accelerating effect of alkalis and alumina should be taken into account and discussed in terms of the composition of initial cement. The modifications of hydration kinetics and mechanism in this case is very well visualised by means of calorimetry. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The paper describes an attempt of chemical activation of fly ash and claims the usefulness of combination of such investigation methods as calorimetry and infrared absorption for investigations of early periods of cement hydration. The research samples were cement pastes made with an addition of fly ash and admixtures of chemical activators, CaCl2, Na2SO4 and NaOH, whereas a cement paste without fly ash addition and a cement-fly ash paste (both without admixtures) were used as reference samples. In order to investigate early periods of cement pastes hydration, the amount and rate of heat release were registered, and IR spectrums were checked at appointed hydration moments. As a result, it was shown that the combination of calorimetric and IR absorption methods in the investigations of early periods of cement hydration was useful. It was confirmed that the use of chemical activators CaCl2, Na2SO4 and NaOH accelerated the hydration of cement pastes containing fly ash additive in early hours after adding water. The action of activators on hydrating cement system is different for each of investigated compounds.  相似文献   

8.

The present work investigates the hydration heat of different cement composites by means of conduction calorimetry to optimize the composition of binder in the design of heavyweight concrete as biological shielding. For this purpose, Portland cement CEM I 42.5 R was replaced by a different portion of supplementary cementitious materials (blast furnace slag, metakaolin, silica fume/limestone) at 75%, 65%, 60%, 55%, and 50% levels to obtain low hydration heat lower than 250 j g?1. All ingredients were analyzed by energy dispersive X-ray fluorescence (EDXRF) and nuclear activation analysis (NAA) to assess the content of major elements and isotopes. A mixture of two high-density aggregates (barite and magnetite) was used to prepare three heavyweights concretes with compressive strength exceeding 45 MPa and bulk density ranging between 3400 and 3500 kg m?3. After a short period of volume expansion (up to 4 h), a slight shrinkage (max. 0.3°/°°) has been observed. Also, thermophysical properties (thermal conductivity, volumetric specific heat, thermal diffusivity) and other properties were determined. The results showed that aggregate content and not binder is the main factor influencing the engineering properties of heavyweight concretes.

  相似文献   

9.
The alkaline activation of blast furnace slag promotes the formation of new cement materials. These materials have many advantages over ordinary Portland cement, including high strength, low production cost and good durability. However, many aspects of the chemistry of alkaline activated slags are not yet very well understood. Some authors consider that these processes occur through a heterogeneous reaction, and that they can be governed by three mechanisms: a) nucleation and growth of the hydrated phase; b) phase boundary interactions and c) any diffusion process though the layer of hydration products. The aim of this paper was to determine the mechanism explaining the early reaction of alkaline activation of a blast furnace slag through the use of calorimetric data. A granulated blast furnace slag from Avilés (Spain) with a specific surface of 4450 cm2> g-1 was used. The alkaline activators used were NaOH, Na2CO3 and a mix of waterglass (Na2SiO3·nH2O and NaOH. The solution concentrations were constant (4% Na2O with respect to the slag mass). The solutions were basic (pH 11-13). The mixes had a constant solution/slag ratio of 0.4. The thermal evolution of the mixes was monitored by conduction calorimetry. The test time was variable, until a rate of heat evolution equal to or less than 0.3 kJ kg-1 h-1 was attained. The working temperature was 25°C. The degree of hydration (α) was determined by means of the heat of hydration after the induction period. The law governing the course of the reaction changes at a certain degree of hydration. From a generally accepted equation, the values of α at which the changes are produced were determined. These values of α depend on the nature of the alkaline activator. Nevertheless, for high values of α, the alkaline activation of slag occurs by a diffusion process. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
G-Oil Well cement was modified by blending it with blast furnace slag and silica fume at various ratios. The hydration was carried out under the hydrothermal conditions (200 °C and 1.2 MPa) up to 7 days. TG and DTG were performed on cured pastes to identify the hydrated products, their quantity and their stability under given hydrothermal curing conditions. The microstructure of samples was observed by a scanning electron microscope. The mechanical compressive strength was determined and the pore structure was analyzed using mercury intrusion porosimeter. It was found out that the compressive strength values of blend G-Oil Well cements markedly increased with increasing blast furnace/silica ratio. The pore structure was consolidated, as demonstrated by the displacement of pore size distribution to the region of micro and nano pores.  相似文献   

11.
The difference among the effects of high-temperature curing on the early hydration properties of the pure cement, the binder containing fly ash, the binder containing GGBS, and the binder containing steel slag was investigated by determining the compressive strength, non-evaporable water content, hydration heat, and Ca(OH)2 content. Results show that the order of the influence degrees of high-temperature on the early hydration of different binders is the binder containing GGBS > the binder containing steel slag > the binder containing fly ash > the pure cement. In the case of short period of high-temperature curing (only 1 day), the strength growth rate of the concrete containing GGBS is the greatest. Though the influence of increasing high-temperature curing period on the hydration degree of the binder containing fly ash is not the most significant, the strength growth rate of the concrete containing fly ash is the most significant due to the excessive consumption of Ca(OH)2 by reaction of fly ash. In the case of high-temperature curing, the Ca(OH)2 content of the paste containing steel slag is much higher than those of the paste containing GGBS and the paste containing fly ash, so though high-temperature curing promotes the hydration of the binder containing steel slag significantly, its influence on the strength growth rate of the concrete containing steel slag is not so significant.  相似文献   

12.
Four paste mixtures with varying replacement level of the cement content by fly ash have been studied. Due to fly ash, the acceleration period decreased and a third hydration peak was noticed with isothermal calorimetry. The total heat after 7 days increased with increasing fly ash content. From 1 to 7 days, thermogravimetry showed a higher chemically bound water and Ca(OH)2-content for the pastes with fly ash. Between 7 and 14 days the calcium hydroxide started to be depleted due to the pozzolanic reaction. A unique relation was found between calcium hydroxide and total heat development.  相似文献   

13.
Isothermal conduction calorimetry, differential thermal analysis (DTA)–thermogravimetric analysis (TG) analysis, and SEM observations have proved the activation effect of Ca(OH)2 released from the C3S hydration upon blast furnace slag (BFS). Five sample mixtures of BFS and C3S and two samples of pure BFS and C3S were submitted to reaction with water inside the calorimeter at room temperature. The values of hydration heat were recorded up to 7 days. Samples were stored in humidity during 28 days and then were submitted to DTA–TG and SEM analysis. The effect of Ca(OH)2 upon heat evolution of sample mixtures has been quantified and its influence upon the formation of new hydrates and microstructure of pastes was evidenced.  相似文献   

14.
The calorimetric data of binders containing pure Portland cement, 20% fly ash, 20% slag and 10% silica fume respectively are determined at different initial casting temperatures using an adiabatic calorimeter to measure the adiabatic temperature rising of concrete. The calorimetric data of binders with different dosages of fly ash at two water binder ratios (w/b) are determined, too. Elevation of initial casting temperature decreases the heat evolution of binder, enhances the heat evolution rate of binder and increases the heat evolution rate of binder at early age. The dosage of fly ash in concrete has different effects on the heat evolution of binder with different w/b. At high w/b ratio the heat evolution of binder decreases when dosage of fly ash increases. At low w/b ratio the heat evolution of binders increases when dosage of fly ash increases from 0 to 40% of total binder quantity. The heat evolution of binder decreases after the dosage of fly ash over 40%. An appropriate dosage of fly ash in binder benefits the performance of concrete at low w/b ratio.  相似文献   

15.
Solid waste silica fume was used to replace fly ash by different ratios to study the early-age hydration reaction and strength formation mechanism of concrete. The change pattern of moisture content in different phases and micro morphological characteristics of concrete at early age were analyzed by low field nuclear magnetic resonance (LF-NMR) and scanning electron microscope (SEM). The results showed that the compressive strength of concrete was enhanced optimally when the replacement ratio of solid waste silica fume was 50%. The results of LF-NMR analysis showed that the water content of modified concrete increased with the increase of solid waste silica fume content. The compressive strength of concrete grew faster within the curing age of 7 d, which means the hydration process of concrete was also faster. The micro morphological characteristics obtained by SEM revealed that the concrete was densest internally when 50% fly ash was replaced by the solid waste silica fume, which was better than the other contents.  相似文献   

16.
A study was carried out comparing silica fume (SF) and dealuminated kaolin (DK) as pozzolanic materials in blended cements. Ten, 20 or 30 wt% of SF or DK were substituted for Portland cement. The kinetics of hydration up to 45 h were studied using isothermal conduction calorimetry. Blends containing pozzolanic materials usually have decreased heats of hydration compared to pure cement during the period of C3S hydration, i.e. during the main hydration peak. Depending on the chemical composition and the activity of the pozzolan, the reaction taking place with the lime typically contributes to the heat output after the main hydration peak.The pozzolanic activity of DK is the principal factor and heat evolution increases with respect to pure PC mortar, during the first 15 h. The presence of hydrated silica (silanol groups) in DK increases the pozzolanic activity especially before and during induction period. The acidic silanol sites are capable of a fast acid-base reaction with the alkalis and with any Ca(OH)2 present in cement during the induction period.  相似文献   

17.
Oil well cementing is a vital operation to assure casing stability and zonal isolation for oil and gas exploration. However, some scenarios demand the cemented region to withstand high thermal gradients and imposed deformations, as occurs in the case of oil wells subjected to cyclic steam injection at temperatures up to 250 °C, to reduce oil viscosity and to increase well pressure to facilitate heavy oil recovery. In this paper, the hydration of ductile special cement systems using styrene-butadiene latex (SBR) and carboxylated styrene-butadiene latex (XSBR) addition was studied by conduction calorimetry. The resulting heat flow curves, presented in log–log plots, were used to analyze the influence of those copolymers on the hydration stages of three families of cement pastes of different complexity. The simpler cement systems (SCCS) contained water, oil well Portland cement class G and SBR or XSBR in its composition. In medium complexity systems silica fume was added and in the higher complexity ones (HCCS), superplasticizer as well. The primary objective of adding those copolymers into the Portland cement paste is to obtain higher ductility properties after setting, silica fume to have good thermal stability up to 300 °C, while superplasticizer was added to guarantee good workability. Rheological tests were carried out to evaluate the effect of the copolymers on the composite viscosity. Thermogravimetric analysis of selected SCCS and HCCS samples was performed to quantify the main formed phases up to 24 h of cement hydration. From the obtained results, it was noticed that SBR and XSBR addition substantially affects hydration kinetics at all early age stages. Starting from pre-induction and induction periods, the main observed effect during these stages, was related to the increased viscosity of the pastes, which was higher in XSBR containing pastes, retarding the hydration reactions of respective following stages, when compared to pastes with the same cementitious matrix without copolymer addition.  相似文献   

18.

The influence of phosphate slag with different finenesses and activators on the hydration of high-belite cement has been studied by using the hydration heat of binders, the DTA curves, the SEM images, and the specific strength. Results indicated that doped phosphorus slag in the cement will reduce heat of hydration. The activity of phosphate slag was low at early stage, but pozzolanic activity of phosphorus slag is higher than that of fly ash. Increasing the specific surface area and curing time and using Ca(OH)2 combined with gypsum can clearly promote the hydration degree of phosphorus slag. The findings in this paper show that since phosphorus slag can promote the hydration of high-belite cement, the strength contribution of cement is increased. Moreover, the greater the specific surface area is, the more significant the promotion effect at 90 d is.

  相似文献   

19.
Calorimetry has been used in the investigations of cementitious systems with different set controlling admixtures. The kinetics and mechanism of hydration process was thus characterized on two different cement clinkers mixed with calcium sulphate containing materials. These admixtures were collected as a residue in the fluidised bed combustion (FBC) of coals with simultaneous desulphurisation process - so-called bottom ash. Apart from anhydrite/gypsum, they were composed mainly of alumina and silica containing material of disordered structure, originating from the coal contaminations of clay character. Anhydrite/gypsum acts as set controlling admixture. The aluminosilicate component reacts with calcium ions released to the solution from the calcium silicate clinker minerals. It has been found that fluidised bed combustion wastes can be successfully used as set controlling admixture. There is no other harmful effects; those could be easily detectable by calorimetry. However the effect is dependent upon the composition of cement clinker. At low calcium aluminate content a slight acceleration of hydration process can be easily observed, particularly at higher amount of admixture. In the mixtures with high calcium aluminate clinker the heat evolved is slightly reduced in the presence of admixture. The dominating role of aluminate phase in heat evolution process within the first hours of hydration process has been thus proved. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
The use of active mineral additions is an important alternative in concrete design. Such use is not always appropriate, however, because the heat released during hydration reactions may on occasion affect the quality of the resulting concrete and, ultimately, structural durability. The effect of adding up to 20% silica fume on two ordinary Portland cements with very different mineralogical compositions is analyzed in the present paper. Excess gypsum was added in amounts such that its percentage by mass of SO3 came to 7.0%. The chief techniques used in this study were heat conduction calorimetry and the Frattini test, supplemented with the determination of setting times and X-ray diffraction. The results obtained showed that replacing up to 20% of Portland cement with silica fume affected the rheology of the cement paste, measured in terms of water demand for normal consistency and setting times; the magnitude and direction of these effects depended on the mineralogical composition of the clinker. Hydration reactions were also observed be stimulated by silica fume, both directly and indirectly – the latter as a result of the early and very substantial pozzolanic activity of the addition and the former because of its morphology (tiny spheres) and large BET specific surface. This translated into such a significant rise in the amounts of total heat of hydration released per gram of Portland cement at early ages, that silica fume may be regarded in some cases to cause a synergistic calorific effect with the concomitant risk of hairline cracking. The addition of excess gypsum, in turn, while prompting and attenuation of the calorimetric pattern of the resulting pastes in all cases, caused the Portland cement to generate greater heat of hydration per gram, particularly in the case of Portland cement with a high C3A content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号