首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The calorimetric measurements were applied in testing the wastes collected from different furnaces in electric power plants as materials to be used in civil engineering. The fly ash materials were collected from two power stations based on different brown coal deposits and working with conventional and fluidized bed installation. The reactivity of high calcium fly ash from sub-bituminous coal combustion has been proved in calorimetric, conductometric, chemical shrinkage, and rheological measurements before their practical implementation on larger scale. Highly soluble components of fly ash contribute to the hydration products and structure formation, followed by setting and hardening of fly ash–cement mixture. These results have been the base of research project aimed in the innovative solutions dealing with the management of deposits of wastes generated as a result of coal combustion. The standardization and potential use on larger scale of these materials, necessary from the environmental point of view, seems to be the question of nearest future.  相似文献   

2.
The heat of hydration evolution of eight paste mixtures of various water to binder ratio and containing various pozzolanic (silica fume, fly ash) and latent hydraulic (granulated blast furnace slag) admixtures have been studied by means of isothermal calorimetry during the first 7 days of the hydration process and by means of solution calorimetry for up to 120 days. The results of early heat of hydration values obtained by both methods are comparable in case of the samples without mineral admixtures; the values obtained for samples containing fly ash and granulated blast furnace slag differ though. The results from isothermal calorimetry show an acceleration of the hydration process by the presence of the fine particles of silica fume and retarding action of other mineral admixtures and superplasticizer. The influence of the presence of mineral admixtures on higher heat development (expressed as joules per gram of cement in mixture) becomes apparent after 20 h in case of fly ash without superplasticizer and after 48 h for sample containing fly ash and superplasticizer. In case of samples containing slag and superplasticizer the delay observed was 40 h. The results obtained by solution calorimetry provide a good complement to the ones of isothermal calorimetry, as the solution calorimetry enables to study the contribution of the mineral admixtures to the hydration heat development at later ages of the hydration process, which is otherwise hard to obtain by different methods.  相似文献   

3.
Investigations of the influence of different fly ashes on cement hydration   总被引:1,自引:0,他引:1  
Investigations of physico-chemical properties of three kinds of fly ash and their influence on cement hydration were performed in this work. Thermal analysis, microcalorimetry, infrared absorption and others were used. It was confirmed that the kind of coal and combustion conditions essentially influence physico-chemical properties of fly ash and in consequence influence cement hydration. Investigated fly ashes show in cement system so-called pozzolanic activity. Fly ash from combustion of brown coal in fluidized furnace revealed better activity compared to other investigated ones. This work is an introduction to more extensive investigation of fly ash activation.  相似文献   

4.
Owing to poor bonding between coarse fly ash particles and hydration products, gap-graded blended cements with fly ash usually show lower compressive strengths than Portland cement. Surface cementitious properties of coarse fly ash were improved by dehydration and rehydration processes in the present study. The results show that during the calcination at 750?°C, C?CS?CH gel is mainly transformed into a new nesosilicate, which is similar to a less crystalline C2S. The formation of melilite from hydration products is also noticed at 900?°C, however, this will not contribute to rehydration of calcined fly ash. Rehydration of new generated nesosilicate on the surface of coarse fly ash leads to a better bonding between coarse fly ash particles and hydration products. As a result, both early and late mechanical properties of gap-graded blended cements containing 25% cement clinker and 39% calcined coarse fly ash are higher than those of 100% Portland cements.  相似文献   

5.
 In this paper the effect of limestone, fly ash, slag and natural pozzolana on the cement hydration products is studied. Four composite cements containing limestone, natural pozzolana from the Milos Island, slag and fly ash have been produced by intergrinding clinker (85%), the above main constituent (15%) and gypsum. The grinding process was designed in order to produce cements of the same 28d compressive strength. The hydrated products, formed after 1–28 days, were studied by means of X-ray diffraction. Unhydrated calcium silicate compounds of clinker and hydration products such as C*H, C*S*H and ettringite are clearly observed. Although there is not significant differentiation among samples hydrated for the same period of time, modifications of calcium aluminate hydrates as well as sulfoaluminate hydrates, are indicated by the XRD patterns. In samples of limestone cement, monocarboaluminate is formed in the first 24 hours and is still present after 28 days.  相似文献   

6.
The difference among the effects of high-temperature curing on the early hydration properties of the pure cement, the binder containing fly ash, the binder containing GGBS, and the binder containing steel slag was investigated by determining the compressive strength, non-evaporable water content, hydration heat, and Ca(OH)2 content. Results show that the order of the influence degrees of high-temperature on the early hydration of different binders is the binder containing GGBS > the binder containing steel slag > the binder containing fly ash > the pure cement. In the case of short period of high-temperature curing (only 1 day), the strength growth rate of the concrete containing GGBS is the greatest. Though the influence of increasing high-temperature curing period on the hydration degree of the binder containing fly ash is not the most significant, the strength growth rate of the concrete containing fly ash is the most significant due to the excessive consumption of Ca(OH)2 by reaction of fly ash. In the case of high-temperature curing, the Ca(OH)2 content of the paste containing steel slag is much higher than those of the paste containing GGBS and the paste containing fly ash, so though high-temperature curing promotes the hydration of the binder containing steel slag significantly, its influence on the strength growth rate of the concrete containing steel slag is not so significant.  相似文献   

7.
A lime-pozzolan cement was used to make pastes containing different quantities of MSW fly ash. After setting, the pastes were cured in water at room temperature from 1 h to 260 days. The hydration characteristics and the nature of the hydration products of the various pastes were studied by simultaneous TG/DSC thermal analysis and X-ray diffractometry. The MSW fly ash was found to induce a slowing of the hydration process in lime-pozzolan pastes, and after some days an evident acceleration of hydration reactions occurred. Sulphate and chloride in the MSW fly ash yield hydration products forming a cementitious matrix.The author is grateful to D. Calabrese for assistance with the thermal and XRD analyses.  相似文献   

8.
在实验室小型流化床实验装置上,利用添加氧化钙研究了原煤中钙硫比变化对燃煤过程中砷在飞灰中的富集规律和飞灰中砷的浸出特性的影响。实验结果表明,增加钙硫比能有效促进砷在飞灰中富集,降低砷的排放。砷与氧化钙的反应受制于钙的硫化反应控制。飞灰中砷的浸出与滤液pH值关系显著,碱性飞灰导致滤液pH值增大,能有效抑制飞灰中砷的浸出。碱性飞灰中砷的浸出历程为飞灰中砷在短时间内快速溶出;随着滤液pH值增大,溶出的砷与钙发生二次反应形成钙砷化合物沉淀,降低滤液中砷浓度。  相似文献   

9.
DTA/TG thermoanalytical investigations and X-ray diffractometry were carried out which demonstrate the effect of MSW fly ash on the hydration reactions of pozzolanic cement. The MSW fly ash has high content of calcium sulphate, alkali chlorides and heavy metals. During the first curing period the calcium aluminate reacts with the sulphate to form ettringite. In that period also the presence of syngenite is noted in the pastes. With the growth of the fly ash content of the mixture there is a lengthening of the period in which the hydration reactions of the calcium silicates are inhibited. Subsequently with the progress of hydration in the pastes the CSH phase develops and the formation of calcium chloroaluminate phase is observed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The hydration properties of the binder containing low quality fly ash or limestone powder were compared in this study. Isothermal calorimetry was performed to measure the hydration heat of the binders during the first 3 days. Mercury intrusion porosimetry, scanning electron microscope, and thermogravimetry–differential thermal analysis were all used to determine the pore structure and hydration products of paste. The compressive strength of the pastes of age 3, 7, 28, and 90 days was also tested. The results indicate that the ground low quality fly ash can improve the mechanical properties of composite cementitious material and ameliorate the hydration properties and microstructure compared with the inert admixture limestone powder. The chemical activity of low quality fly ash presents gradually and appears high pozzolanic effect at later period, and it can accelerate the generation of hydration products containing more chemically bonded water. This leads to the higher rate of strength growth and cement hydration degree, the more compact microstructure and reasonable pore size distribution. Additionally, low quality fly ash delays the induction period, but shortens the acceleration period, therefore there is no significant influence on the second exothermic peak occurrence time.  相似文献   

11.

The influence of phosphate slag with different finenesses and activators on the hydration of high-belite cement has been studied by using the hydration heat of binders, the DTA curves, the SEM images, and the specific strength. Results indicated that doped phosphorus slag in the cement will reduce heat of hydration. The activity of phosphate slag was low at early stage, but pozzolanic activity of phosphorus slag is higher than that of fly ash. Increasing the specific surface area and curing time and using Ca(OH)2 combined with gypsum can clearly promote the hydration degree of phosphorus slag. The findings in this paper show that since phosphorus slag can promote the hydration of high-belite cement, the strength contribution of cement is increased. Moreover, the greater the specific surface area is, the more significant the promotion effect at 90 d is.

  相似文献   

12.
The paper describes an attempt of chemical activation of fly ash and claims the usefulness of combination of such investigation methods as calorimetry and infrared absorption for investigations of early periods of cement hydration. The research samples were cement pastes made with an addition of fly ash and admixtures of chemical activators, CaCl2, Na2SO4 and NaOH, whereas a cement paste without fly ash addition and a cement-fly ash paste (both without admixtures) were used as reference samples. In order to investigate early periods of cement pastes hydration, the amount and rate of heat release were registered, and IR spectrums were checked at appointed hydration moments. As a result, it was shown that the combination of calorimetric and IR absorption methods in the investigations of early periods of cement hydration was useful. It was confirmed that the use of chemical activators CaCl2, Na2SO4 and NaOH accelerated the hydration of cement pastes containing fly ash additive in early hours after adding water. The action of activators on hydrating cement system is different for each of investigated compounds.  相似文献   

13.
DTA method was used to follow the hydration process of cement admixtures containing fluidized bed combustion by-product, formed on joined combustion and desulphurisation in some installations with fluidized bed. Based on endothermic peaks attributed to the dehydration of phases formed on hydration, the conditions leading to the formation of so-called ‘delayed’ ettringite were found. This calcium alumino-sulphate hydrate is responsible for lower durability of fluidized bed ash containing material. DTA method is also beneficial in the studies of fluidized bed combustion by-product itself, giving information about the un-burnt carbon content and pozzolanic properties. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The effect of alkaline hydrothermal activation of class-C fly ash belite cement was studied using thermal analysis (TG/DTG) by determining the increase in the combined water during a period of hydration of 180 days. The results were compared with those obtained for a belite cement hydrothermally activated in water. The two belite cements were fabricated via the hydrothermal-calcination route of class-C fly ash in 1 M NaOH solution (FABC-2-N) or demineralised water (FABC-2-W). From the results, the effect of the alkaline hydrothermal activation of belite cement (FABC-2-N) was clearly differentiated, mainly at early ages of hydration, for which the increase in the combined water was markedly higher than that of the belite cement that was hydrothermally activated in water. Important direct quantitative correlations were obtained among physicochemical parameters, such as the combined water, the BET surface area, the volume of nano-pores, and macro structural engineering properties such as the compressive mechanical strength.  相似文献   

15.
《中国化学会会志》2018,65(4):485-489
Chemical shifts and intensities of the 27Al NMR signals provide structural information about the environment of Al nuclei in presence of an external magnetic field. This paper analyzes the structural information of the aluminum nuclei present in the precursor material after mechanochemical co‐grinding of the raw materials, namely fly ash, NaOH, and amorphous tricalcium phosphate [Ca3(PO4)2], with the help of 27Al MAS NMR spectral studies. The results indicate transformation of the sixfold coordination Al ions with oxygen AlQ6 present in aluminosilicate material fly ash to fourfold AlQ4 and fivefold AlQ5 in the precursor material. The variation in chemical shift is between δ 64 and 65 ppm. This indicates that, in addition to direct bonding to the oxygen atom, the Al tetrahedron is also bonded to Si as [AlQ4(4Si)]. Thus, the mechanochemical co‐grinding of the raw materials initiates a solid‐state chemical reaction among them. The addition of water alone to this precursor material results in the formation of the geopolymeric material unlike the conventional geopolymeric system which requires the addition of a highly alkaline aqueous solution to fly ash. This study helps in the determination of the reaction mechanism during the mechanochemical transformation of raw materials into the geopolymeric product by a novel process.  相似文献   

16.
Heat Evolution in Hydrated Cementitious Systems Admixtured with Fly Ash   总被引:2,自引:0,他引:2  
In this study a calorimeter was applied to investigate the hydration of cements with fly ash (pulverised fuel ash – PFA) admixture. Four cements were used to produce the binders containing from 5 to 60% fly ash. The process of hydration in cementitious systems with fly ashes is slower than in reference pastes without admixtures. However, the calorimetric calculations and the shape of heat evolution curves seem to indicate a complex interaction between the components of cement and ash resulting in the increasing total heat evolved values per unit of cement. At higher fly ash content the accelerating effect of alkalis and alumina should be taken into account and discussed in terms of the composition of initial cement. The modifications of hydration kinetics and mechanism in this case is very well visualised by means of calorimetry. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
利用循环流化床对天池木垒高碱煤进行了气化实验研究,获得了天池木垒高碱煤在循环流化床上的结渣特性及碱金属迁移规律,并对实验中出现的床内颗粒聚团现象进行了分析。结果表明,不同存在形态的碱金属在煤气化过程中的迁移规律不同,水溶钠和醋酸铵溶钠在煤气化过程中以气态形式析出,不溶钠主要存在半焦中;随着气化温度升高,底渣和煤气中钠含量增加,飞灰中钠含量减少;尾部管道温度降低过程中,煤气中钠的冷凝速率明显高于钾;天池木垒高碱煤气化过程中容易引起床内颗粒聚团,床温越高,颗粒聚团现象越明显,床温波动越大;碱金属与灰分中矿物成分及床料中SiO2反应生成黏性低温共熔物是导致颗粒聚团的关键。  相似文献   

18.
This paper investigates the influence of mechanical grinding on pozzolanic characteristics of circulating fluidized bed fly ash (CFA) from the dissolution characteristics, paste strength, hydration heat and reaction degree. Further, the hydration and hardening properties of blended cement containing different ground CFA are also compared and analyzed from hydration heat, non-evaporable water content, hydration products, pore structure, setting time and mortar strength. The results show that the ground CFA has a relatively higher dissolution rate of Al2O3 and SiO2 under the alkaline environment compared with that of raw CFA, and the pozzolanic reaction activity of ground CFA is gradually improved with the increase of grinding time. At the grinding time of 60 min, the pozzolanic reaction degree of CFA paste is improved from 6.32% (raw CFA) to 13.71% at 7 days and from 13.65 to 28.44% at 28 days, respectively. The relationships of pozzolanic reaction degree and grinding time of CFA also conform to a quadratic function. For ground CFA after a long-time grinding such as 60 min, the hydration heat and non-evaporable water content of blended cement containing CFA are significantly improved. Owing to relatively smaller particle size and higher activity of ground CFA, the blended cement paste has more hydration products, narrower pore size distribution and lower porosity. For macroscopic properties, with increase in grinding time of CFA, the setting time and strength of blended cement are gradually shortened and improved, respectively.  相似文献   

19.
The purpose of the study described in this paper was to compare removal of Zn(II) from aqueous solutions by use of two adsorbents—alkali-modified fly ash (FAN) and alkali and dye-modified fly ash (FAN-MO). The effects of four conditions (solution pH, contact time, initial metal ion concentration, and dose of adsorbent) on removal of Zn(II) at 27 ± 5 °C were studied in batch mode. Adsorption of Zn(II) was greater at pH 4.0 for FAN (76.49 %) and at pH 5.0 for FAN-MO (24.72 %). Maximum adsorption of Zn(II) by FAN and FAN-MO was achieved after 50 min. The linear forms of the Langmuir, Freundlich, Tempkin, D–R, Harkin–Jura, and Frenkel–Halsey isotherms were used for experiments with different concentrations of the metals. Adsorption of Zn(II) ions satisfied the Langmuir isotherm model only. The adsorption capacity of both adsorbents was also investigated by column studies. Adsorption of Zn(II) ions on FAN in column studies (45.33 %) was lower than in batch mode studies. For FAN-MO, adsorption was 37.88 % in column studies, again lower than in batch mode studies. Fly ash modified by alkali had a higher adsorption capacity for Zn(II) ions than fly ash modified by alkali followed by addition of dye.  相似文献   

20.
Binders containing large amounts of cement substitutes have been a subject of interest for many years because of the possibility to reduce the amount of cement in concrete, and in consequence decrease negative influence of cement production on natural environment. In this work, studies related to hydration of binders where 80 % of cement was substituted by blended pozzolana were carried out. The aim of this work was to investigate activation of fly ash–cement system by addition of spent aluminosilicate catalyst, using calorimetry and thermal analysis as main methods of investigations. It was demonstrated that spent fine-grained fluidised catalytic cracking catalyst acts acceleratingly on early hydration of binder. It seems to be beneficial to use up to 10 mass% of this spent catalyst. Higher amounts may cause changes in the mechanism of early hydration. Because Ca(OH)2 in such systems is quickly consumed due to pozzolanic reaction it seems beneficial to modify composition of binders by introducing additional amounts of Ca(OH)2 or cement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号