首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 275 毫秒
1.
用新型催化体系TiCl4,Ti(OBu)4/MgCl2,SiO2和ZnCl2/醇/AIR3催化乙烯与1-丁烯气均聚及共聚,制得两种共聚物弹性体,发现新型催化剂体系具有独特的齐聚和原位共聚性能,采用^13CNMR测定了共聚物链序列分布结构,观察到共聚单体在聚合物链中分布不均匀,存在较长的乙烯链段和较多的1-丁烯嵌段,产物DSC谱图表现出复杂的结构熔融行为,存在多种结晶形态,出现熔融肩峰及双峰,怀通常  相似文献   

2.
短链支化聚乙烯的合成与表征   总被引:1,自引:0,他引:1  
合成了两类结构明确的乙烯共聚物, 通过FTIR, GPC, 1H NMR和13C NMR表征了产物的分子结构, 分别研究了分子量和短链支化含量对两类共聚物结晶性能的影响. 采用阴离子聚合制备分子量(Mw)20000~110000、分子量分布为1.1的1,2-结构摩尔分数为7%左右的聚丁二烯. 加氢反应后得到乙烯/1-丁烯模型共聚物的熔点和结晶度随着分子量的增加而下降. 采用茂金属催化剂Et[Ind]2ZrCl2催化乙烯与1-己烯共聚合, 制备分子量为100000左右, 共聚单体摩尔分数为0~5.5%的乙烯/1-己烯共聚物, DSC结果表明其熔点和结晶度随着共聚物中1-己烯含量的升高而降低.  相似文献   

3.
PEB/MMA-AN悬浮接枝共聚反应机理   总被引:1,自引:0,他引:1  
研究了乙烯-1-丁烯共聚物(PEB)弹性体与甲基丙烯酸甲酯(MMA)-丙烯腈(AN)悬浮接枝共聚反应行为及接枝共聚产物对SAN树脂增韧作用随反应时间的变化规律, 用凝胶渗透色谱法和傅里叶变换红外光谱法对接枝共聚产物进行了表征, 分析了接枝共聚反应机理, 推算了接枝链分子量. 结果表明, 体系首先发生链增长自由基向PEB转移终止形成非接枝共聚物(MANL)和PEB大分子自由基引发单体共聚形成接枝链(g-MAN)的反应, 接枝反应结束后体系发生明显的非接枝共聚形成非接枝共聚物(MANH)的反应; MANL的分子量低于g-MAN的分子量, 而g-MAN的分子量明显低于MANH的分子量; 在接枝共聚过程中发生已接枝和未接枝PEB断链并随机再接生成多嵌段共聚物的副反应; 在反应初期, 接枝链的AN单元含量接近于非接枝共聚物的AN单元含量, 在反应中后期前者远低于后者.  相似文献   

4.
采用MgCl2负载TiCl4及1,3-二氯-2-丙醇给电子体(XROH),与三乙基铝助催化剂组成的催化剂体系,合成了1-己烯共聚率高且宽分子量分布的乙烯/1-己烯共聚物。 讨论了催化体系的组成、配比和聚合条件对乙烯/1-己烯共聚合行为,共聚物结构、分子量及分子量分布的影响。 结果表明,n(Ti)∶n(Mg)=10∶1,n(XROH)∶n(MgCl2)=2.6∶1,n(Al)∶n(Ti)=100∶1,乙烯压力0.45 MPa,聚合温度80 ℃,聚合时间2 h,共聚单体(1-hexene)浓度0.25 mol/L时,催化效率达23.2 kg/g cat。 采用13C NMR、X-ray、SEM、WAXD、DSC、GPC等测试技术对催化剂、共聚物的结构进行了表征。 结果表明,在Zieglar-Natta(Z-N)催化体系中,给电子体多卤代醇与TiCl4结合,载体MgCl2的晶体结构发生了变化。 结晶度降低,有利于催化剂负载量的提高(ω(Ti)=4.8%)和催化效率增大。 催化体系产生了多种活性中心,使聚烯烃分子量分布变宽(15~20)。 多卤代醇还可增强1-己烯与乙烯的共聚能力,在共聚物中1-己烯的摩尔分数达5.1%。  相似文献   

5.
将五甲基茂基三苄氧基钛 (Cp Ti(OBz) 3) 改性甲基铝氧烷 (mMAO)催化体系以顺序加料溶液法合成的乙烯与苯乙烯嵌段共聚反应产物进行沸丁酮、沸四氢呋喃 (THF)和沸氯仿等溶剂连续抽提分离 ,发现嵌段共聚物主要存在于THF和CHCl3的可溶级分中 ,嵌段共聚物的总含量占共聚产物的 2 2 8wt%~ 38 2wt% ,对THF和CHCl3可溶级分分别用 1 3C NMR、WAXD、DSC和GPC等手段进行表征 .1 3C NMR谱显示出含有支化聚乙烯链段和间规聚苯乙烯链段的嵌段共聚物特殊结构 ,WAXD谱表明嵌段共聚物因两链段的相互缠结使各自结晶度显著较低 ,由于嵌段共聚物苯乙烯链段较长、乙烯链段较短 ,DSC图谱只显示苯乙烯链段的结晶熔融峰 ,GPC曲线表明 ,单茂钛催化体系催化乙烯 苯乙烯嵌段共聚合的单一活性中心特征 .由此对Cp Ti(OBz) 3 mMAO催化体系的苯乙烯 乙烯嵌段共聚合机理进行初探  相似文献   

6.
合成了三种负载型二亚胺配体钴配合物 TiCl4复合催化剂 (CL1、CL2、CL3催化剂 ) .不用MAO ,以烷基铝为助催化剂 ,用它们催化乙烯 1 丁烯淤浆共聚合制备一系列塑性体和弹性体共聚物 .研究表明 ,复合催化剂性质受二亚胺配体性质影响 ,配体L1制备的复合催化剂具有低聚及原位共聚性能 ,可制得高支化度(36 0~ 6 1 5branchnumber 10 0 0C)低密度和极低密度 (0 885~ 0 910g cm3)塑性体和弹性体共聚物 .在 1 丁烯用量低于 5 %时 ,CL1催化剂制备的共聚产物中 1 丁烯含量超过投料比  相似文献   

7.
采用摩尔含量接近的两个单体乙烯和1-丁烯分别无规共聚聚丙烯样品,用三氯苯进行室温可溶物和不溶物的分离,采用凝胶渗透色谱、13C核磁共振波谱及热分析等方法对两种共聚聚合物及其分离物进行表征,探讨了乙烯和1-丁烯作为共聚单体对聚丙烯树脂结构和性能的影响.结果表明,与乙烯相比,1-丁烯更趋向于共聚在较长的聚丙烯分子链上,其结果导致丙烯/1-丁烯无规共聚聚丙烯的可溶物含量更低.同时,对两种无规共聚物结晶性能的差异以及对光学性能和动态力学性能的影响研究表明,如果共聚单体含量接近,丙烯/1-丁烯无规共聚物结晶度更高;透明制品雾度相同时,丙烯/1-丁烯无规共聚物的刚性更高.  相似文献   

8.
聚二甲基硅氧烷(PDMS)的结晶熔融温度(Tm)约为-43℃,远高于其玻璃化转变温度(Tg)(-124℃),为扩大其低温使用范围,需要破坏其链结构规整性以抑制结晶发生。但是我们发现在前人工作中,含PDMS段的嵌段共聚物,即使不破坏PDMS段的链结构规整性,其动态力学谱上有时也观测不到PDMS的结晶峰。遗憾的是这些作者末曾对这一不寻常现象给予足够的重视。无疑,搞清共聚物中PDMS不寻常结晶行为同共聚物形态结构的关系,对提高含有PDMS段的嵌段型热塑性弹性体的低温使用范围将有指导意义。本文报导PB-PDMS中的结晶行为与共聚物形态结构的关系。  相似文献   

9.
张方  张航天  杨甜  孔波  郭安儒  章琦  吴一弦 《高分子学报》2020,(1):98-116,I0004
采用2-氯-2,4,4-三甲基戊烷或对二枯基氯为引发剂和TiCl4或FeCl3为共引发剂,引发异丁烯(IB)可控/活性正离子聚合与官能端基转化,设计合成不同分子量及窄分子量分布的端基官能化聚异丁烯,如双端烯丙基溴官能化聚异丁烯(Br-PIB-Br)或双端烯丙基胺官能化聚异丁烯(H2N-PIB-NH2).采用烯丙基溴/高氯酸银体系引发四氢呋喃(THF)开环聚合,合成聚四氢呋喃活性链(PTHF+).进一步通过将IB可控/活性正离子聚合与THF可控/活性正离子开环聚合2种方法相结合,设计合成2种新型官能化聚四氢呋喃-b-聚异丁烯-b-聚四氢呋喃(PTHF-b-PIB-b-PTHF)三嵌段共聚物:(1)以上述Br-PIB-Br为大分子引发剂,在AgClO4作用下引发THF活性正离子开环聚合,采用水终止活性链端,设计合成双端为羟基的HO-PTHF-b-PIB-b-PTHF-OH三嵌段共聚物(简称:FIBF-OH);(2)以上述合成的PTHF+活性链与H2NPIB-NH2链端胺基发生高效亲核取代反应,设计合成中间链段连接点含―NH―官能基团的PTHF-b-HNPIB-NH-b-PTHF三嵌段共聚物(简称:FIBF-NH).在上述三嵌段共聚物中,极性PTHF链段与非极性PIB链段的热力学不相容,导致其呈现明显的微相分离,且微观形态与共聚组成相关.PTHF均聚物易结晶,在上述共聚物中由于PTHF链段单端受限致其结晶性减弱.三嵌段共聚物分子链的中间连接点含―NH―官能基团,具有更强的氢键作用,促进PTHF链段重排并结晶,易形成更紧密的超分子网络结构,导致即使在PTHF链段相对分子量为0.7 kg·mol^-1时仍具有较强的结晶性,且结晶熔融温度明显提高.此外,由于FIBF-NH中形成超分子网络结构,使材料具有优异的自修复性能,材料表面的切痕在常温下10 min后可以完全自愈合.本文设计合成的新型官能化PTHF-b-PIB-b-PTHF三嵌段共聚物兼具有PTHF与PIB的优良性能,在生物医用、智能修复等功能材料领域具有潜在的应用前景.  相似文献   

10.
合成了新型双核苯氧基亚胺锆催化剂(Cat B),并与α-二亚胺镍(Ⅱ)催化剂(CatA)构成催化体系,在助催化剂甲基烷氧铝(MAO)及链穿梭剂二乙基锌(ZnEt_2)作用下催化乙烯与1-辛烯共聚,制备了聚乙烯-b-聚(乙烯/1-辛烯)嵌段共聚物.采用差示扫描量热法(DSC)、傅里叶变换红外光谱(FTIR)及碳核磁共振波谱(13C NMR)等方法对聚乙烯-b-聚(乙烯/1-辛烯)嵌段共聚物进行表征.结果表明,在甲苯作溶剂的1.0 MPa和50℃条件下,MAO和金属活性中心的摩尔比为300∶1;1-辛烯加入量为0.58 mol/L时,CatB/CatA/ZnEt_2催化体系制备的产物中1-辛烯插入率为4.9%,DSC出现双峰,"软段"部分在聚合物链段中分布较为集中.  相似文献   

11.
以球形高效负载的TiCl4/MgCl2/邻苯二甲酸二异丁酯(DIBP)为催化剂, 采用本体聚合方法进行丙烯与1-丁烯共聚合研究. 考察了共单体效应对共聚活性及聚合物立构规整性的影响; 表征了共聚物的结构. 结果表明, 随着1-丁烯/丙烯投料比的增加, 聚合活性呈先升高后降低的趋势, 在1-丁烯/丙烯摩尔投料比为0.26条件下聚合活性达到最高, 并随着共聚物中1-丁烯含量的增加, 共聚物的熔点明显下降, 分子量降低, 分子量分布变窄, 同时共聚物力学性能有明显提高, 透明度逐渐增加.  相似文献   

12.
We describe the synthesis of [bis(N-(3-tert-butylsalicylidene)anilinato)] titanium (IV) dichloride (Ti-FI complex) and examine the effects of comonomer (feed concentration and type) on its catalytic performance and properties of the resulting polymers. Ethylene/1-hexene and ethylene/1-octene copolymers were prepared through copolymerization using Ti-FI catalyst, activated by MAO cocatalyst at 323 K and 50 psi ethylene pressure at various initial comonomer concentrations. The obtained copolymers were characterized by DSC, GPC and 13C-NMR. The results indicate that Ti-FI complex performs as a high potential catalyst, as evidenced by high activity and high molecular weight and uniform molecular weight distribution of its products. Nevertheless, the bulky structure of FI catalyst seems to hinder the insertion of α-olefin comonomer, contributing to the pretty low comonomer incorporation into the polymer chain. The catalytic activity was enhanced with the comonomer feed concentration, but the molecular weight and melting temperature decreased. By comparison both sets of catalytic systems, namely ethylene/1-hexene and ethylene/1-octene copolymerization, the first one afforded better activity by reason of easier insertion of short chain comonomer. Although 1-hexene copolymers also exhibited higher molecular weight than 1-octene, no significant difference in both melting temperature and crystallinity can be noticed between these comonomers.  相似文献   

13.
Effect of SiCl4-modified silica/MAO-supported Et[Ind]2ZrCl2 metallocene catalyst on copolymerization of ethylene with -olefins was investigated. Effect of SiCl4 on activities was diminished with higher -olefins. Molecular weights of copolymers decreased with SiCl4 modification. SiCl4 modification also resulted in a lower molecular weight distribution. 13C NMR showed that ethylene incorporation in all systems gave copolymers with similar triad distribution. In addition, a narrow branching distribution can be achieved with SiCl4 modification.  相似文献   

14.
使用Et(Ind)2ZrCl2/MAO催化剂催化乙烯和3种ω-对甲苯基-α-烯烃(对甲苯基-1-丙烯,4-对甲苯基-1-丁烯,6-对甲苯基-1-己烯)共聚,主要研究了共单体加入量对催化剂活性和所得共聚物性能的影响.4-对甲苯基-1-丁烯表现出最好的共聚性能.使用1H-NMR、13C-NMR、GPC和DSC对共聚物进行了表征.  相似文献   

15.
(2-RInd)2ZrCl2 (R:Ph,H) catalyst was supported on MCM-41 and ethylene copolymerization behavior as well as microstructure of copolymers were studied. A steady rate–time profile behavior was observed for homo and copolymerization of ethylene using supported catalysts. It was noticed that increasing the comonomer content can result in lower physical properties. The obtained results indicated that (2-PhInd)2ZrCl2/MCM-41 had higher ability of comonomer incorporation than the non-substituted supported catalysts. The CCC, CCE, and ECC (C: comonomer, E: ethylene) triad sequence distribution in backbone of copolymers were negligible, that means no evidence could be detected for comonomer blocks. The polymer characterization revealed that utilizing 1-octene instead of 1-hexene as the comonomer leads to more heterogeneous distribution of chemical composition. The heterogeneity of the chemical composition distribution and the physical properties were influenced by the type of comonomer and catalyst. (2-PhInd)2ZrCl2/MCM-41 produced copolymers containing narrower distribution of lamellae (0.3–1 nm) than the copolymer produce using Ind2ZrCl2/MCM-41 (0.3–1.6 nm).  相似文献   

16.
The melting temperature and heat of fusion were measured for an extensive series of compositionally uniform copolymers of ethylene with butene‐1, hexene‐1, and octene‐1. Fractions and whole polymers that exhibited minimal interchain compositional heterogeneity were from commercial copolymers made with either Ziegler–Natta (ZN) or single‐site metallocene catalysts. The present results do not support recent claims that ZN and corresponding metallocene catalyst copolymers melt at significantly different temperatures, nor the implication that comonomer incorporation is “blocky” in ZN copolymers. In five of the six comonomer/catalyst systems the dependencies of the melting temperature on comonomer type and amount were scarcely distinguishable. This common behavior is the same as that for a model random copolymer, so we conclude that most ethylene/α‐olefin copolymers have random distributions of ethylene sequences. The exception in the present study is a metallocene ethylene/butene‐1 copolymer that melts at lower temperatures and apparently has perceptibly alternating sequence distributions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3416–3427, 2004  相似文献   

17.
Melting points of copolymers of ethylene and 1-alkenes ranging from 1-butene to 1-octadecene have been determined. The copolymers were prepared by means of a homogeneous Et3Al2Cl3/VOCl3 initiating system so that in individual samples, comonomer contents do not vary with molecular weight. Evidence is presented for a random distribution of comonomer units in the copolymers. Melting points determined by differential scanning calorimetry are essentially independent of branch length at low comonomer contents. At higher comonomer contents (5–9 mol% 1-alkene), melting points decrease in the order 1-butene > 1-octene > 1-octadecene copolymers. The weight fraction of ethylene sequences drops to less than 60% in copolymers with 1-octadecene of high comonomer content and this results in a reduction in the crystallite thicknesses attained by these copolymers.  相似文献   

18.
Copolymerizations of ethylene/1-butene, and ethylene/1-decene and terpolymerization of ethylene/1-butene/1-decene were carried out in n-heptane with various concentrations of comonomer in the feed. Cp2ZrCl2-methylaluminoxane (MAO) was used as catalyst. When comonomers were added into the ethylene polymerization, the activity of the catalyst increased significantly and continued to do so as the concentration of the comonomer was increased. At the same time as the comonomer concentration and catalyst activity increased, the molecular weight and crystallinity of the polymers decreased. An important reason for the activity enhancement may, therefore, be that the comonomer takes part in the activation of catalytic centers, decreasing the activation energy required for monomer to insert into the active centers. Use of Cp2ZrCl2-MAO catalyst allowed the preparation of ethylene/1-decene copolymers containing 20 wt % of 1-decene. © 1993 John Wiley & Sons, Inc.  相似文献   

19.
A novel slurry reactor was used to investigate the copolymerization behavior of ethylene and 1-butene in the presence of 1 wt % Cr on Davison silica (Phillips-type) catalyst over the temperature range of 0–50°C, space velocity of about 0.0051 [m3 (STP)]/(g of catalyst) h, and a fixed ethylene to 1-butene feed mole ratio of 95 : 5. The effect of varying the ethylene to 1-butene feed ratios, 100 : 0, 96.5 : 3.5, 95 : 5, 93 : 7, 90 : 10, 80 : 20, and 0 : 100 mol/mol at 50°C was also studied. The addition of 1-butene to ethylene typically increased both copolymerization rates and yields relative to ethylene homopolymerization with the same catalyst, reaching a maximum yield for an ethylene: 1-butene feed ratio of 95 : 5 at 50°C. The incorporation of 1-butene within the copolymer in all cases was less than 5 mol %. The average activation energy for the apparent reaction rate constant, ka, based on total comonomer mole fraction in the slurry liquid for the ethylene to 1-butene feed mole ratio of 95 : 5 in the temperature range of 50–30°C measured 54.2 kJ/mol. The behavior for temperatures between 30 to 0°C differed with an activation energy of 98.2 kJ/mol; thus, some diffusion limitation likely influences the copolymerization rates at temperatures above 30°C. A kinetics analysis of the experimental data at 50°C for different ethylene to 1-butene feed ratios gave the values of the reactivity ratios, r1 = 27.3 ± 3.6 and r2 ≅ 0, for ethylene and 1-butene, respectively. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号