首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
CO氧化可能是多相催化领域最常见的反应,它不仅能作为探针反应研究催化剂结构、反应活性位等,而且在诸多实际过程如空气净化、汽车尾气污染物控制、燃料电池所用氢源净化等扮演重要角色.最早的CO氧化催化剂为霍加拉特剂,其组分主要为CuO与Mn O_2混合氧化物,然而在实际应用过程中存在低温活性低、吸湿易失活等缺点.1987年,Haruta等发现湿化学法制备的氧化物负载Au催化剂表现出非常高的低温CO氧化活性及耐水稳定性,其Au粒子以纳米尺度分散,进而引发了催化研究领域的"淘金热"及纳米催化研究热潮.而CO氧化通常作为考察Au催化剂结构性质的探针反应,也成为考核其它金属催化剂是否具有高活性的判据之一.Pt族金属上CO氧化反应从Langmuir等研究开始至今已有100多年,然而低温下该金属催化剂活性与Au催化剂相比要低一个数量级.本质原因为Pt族金属上CO吸附较强,O_2吸附与活化受到抑制,而该步骤被认为是CO氧化的速控步,因而表现出较低的催化活性.通常Pt族金属催化剂需要100 oC以上CO才能脱附,O_2进而得以吸附.目前研究人员采取多种策略,其基本原则为削弱Pt族金属上CO吸附强度或者提供其它活性位供O_2吸附与活化.本综述将概括近十年来Pt族金属催化剂CO氧化研究进展,主要总结室温甚至超低温条件下的研究成果.高活性CO氧化催化剂主要是通过采用可还原氧化物为载体或助剂,或者改变催化剂表面性质如使表面富OH基物种来形成.Au催化剂的研究发现,改变金属粒子尺寸极有可能获得不同寻常的催化性能,而常规的Pt族金属催化剂研究主要是在纳米尺度.近期人们发现逐渐减小Pt族金属粒子尺寸,从纳米到亚纳米甚至单原子时,其电荷状态逐渐呈正价形式,这有利于削弱其CO吸附强度.此外,可通过增强金属载体间的相互作用,改变金属载体接触方式,如从核壳到交叉结联结构,构筑出更多的金属载体界面,使得O_2更容易吸附与活化或稳定更多的OH基物种进而在此界面与吸附的CO反应.伴随着表征技术的发展,CO氧化机理的认识也更加深入,这给催化剂的设计带来更多新的思路.(1)改变CO吸附活化位,将CO吸附活化位从金属转移到载体上,从而大大降低CO吸附强度,活化的CO物种在反应过程中容易溢流到金属载体界面处,这甚至有利于超低温度下(–100℃左右)CO氧化.(2)改变O_2活化形式.O_2通常在Pt族金属上容易以解离氧原子形式存在,通过改变载体、金属载体界面性质使得O_2以分子氧形式活化,如形成超氧或过氧物种,这有利于降低CO氧化的活化能垒,进而提高其低温甚至超低温下CO氧化活性.今后,设计并合成出在超低温度下能够氧化CO的Pt族金属催化剂将成为CO氧化催化剂研究的重要方向之一.  相似文献   

2.
在分子尺度上介绍了Au/TiO2(110)模型催化剂表面和单晶Au表面CO氧化反应机理和活性位、以及H2O的作用.在低温(<320 K), H2O起着促进CO氧化的作用, CO氧化的活性位位于金纳米颗粒与TiO2载体界面(Auδ+–Oδ––Ti)的周边. O2和H2O在金纳米颗粒与TiO2载体界面边缘处反应形成OOH,而形成的OOH使O–O键活化,随后OOH与CO反应生成CO2.300 K时CO2的形成速率受限于O2压力与该反应机理相印证.相反,在高温(>320 K)下,因暴露于CO中而导致催化剂表面重组,在表面形成低配位金原子.低配位的金原子吸附O2,随后O2解离,并在金属金表面氧化CO.  相似文献   

3.
在分子尺度上介绍了Au/TiO_2(110)模型催化剂表面和单晶Au表面CO氧化反应机理和活性位、以及H_2O的作用.在低温(320 K),H_2O起着促进CO氧化的作用,CO氧化的活性位位于金纳米颗粒与TiO_2载体界面(Au~(δ+)O~(δ–)––Ti)的周边.O_2和H_2O在金纳米颗粒与Ti O_2载体界面边缘处反应形成OOH,而形成的OOH使O–O键活化,随后OOH与CO反应生成CO_2.300K时CO_2的形成速率受限于O_2压力与该反应机理相印证.相反,在高温(320 K)下,因暴露于CO中而导致催化剂表面重组,在表面形成低配位金原子.低配位的金原子吸附O_2,随后O_2解离,并在金属金表面氧化CO.  相似文献   

4.
室温条件下高效消除CO具有重要的意义,但目前仍具有极大的挑战.考虑到实际应用环境中存在的水汽,实现具有应用价值的CO消除过程的关键是设计耐湿性好,且能够在室温甚至更低温度下具有较高CO氧化活性的催化剂.以Hopcalite(Cu-Mn-Ox)和Co3O4为代表的氧化物和负载型Au基催化剂具有优异的低温CO氧化活性,但存在耐湿性差、催化性能重复性不好等缺点,因而限制了其实际应用.铂族金属催化剂凭借优异的稳定性和耐湿性成为目前最广泛应用的尾气净化催化剂.但是由于铂金属位点强吸附CO的毒化作用,CO氧化工作温度多在200℃以上,从而限制了其在室内空气净化、燃料电池工业氢源净化以及汽车发动机冷启动阶段尾气净化等过程中的实际应用.研究人员尝试调节金属粒子尺寸、金属-载体界面、双金属结构及助剂效应等以促进O2的活化或者削弱CO的吸附,尽管取得了一定的进展,但仍缺少一种具有普适性和实际CO消除应用前景的铂族金属基催化体系.本文利用新型Fe(OH)x负载亚纳米Rh催化剂作为室温条件下CO湿氧化的典型例子,研究H2O对CO氧化反应的影响并探索其反应机制,旨在为发展实际可用的CO氧化消除催化体系提供参考.活性测试结果表明,H2O的存在可以大幅提高Fe(OH)x负载亚纳米Rh催化剂的CO氧化速率,并在室温条件下实现CO的长效稳定消除;而相似共沉淀法制备的Rh/Al2O3催化剂上H2O并没有促进CO氧化.原位红外表征发现,Fe(OH)x在湿氧化CO过程中的重要作用在于为O2和H2O的吸附提供位点,促进二者反应生成羟基物种,并与亚纳米Rh团簇上吸附的CO反应生成CO2.此外,H2O的存在使得CO氧化的表观活化能由22降至9 kJ mol^-1,说明反应路径或决速步骤由CO+O转变为反应能垒更低的CO+OH,从而大幅提高了CO氧化反应速率和反应活性.随后,时间分辨CO滴定红外实验证明,Rh/Fe(OH)x催化剂表面OH可以与CO反应生成CO2,而Al2O3负载的纳米Rh催化剂则不能,从而进一步揭示了Fe(OH)x载体在高效湿氧化消除CO过程中的重要作用.最后,通过拓展实验证明该反应机理可以适用于Fe(OH)x负载的其它铂族金属催化剂,提供了一种具有普适性和实际CO消除应用前景的铂族金属基催化体系.  相似文献   

5.
钴和钾对Pt/γ-Al2O3上CO选择性氧化的助催化作用   总被引:4,自引:0,他引:4  
严菁  马建新  周伟  邬敏忠 《催化学报》2005,26(6):489-496
 添加Co或/和K助催化剂可在不同程度上改善Pt/γ-Al2O3催化剂对富氢气氛下CO选择性氧化的性能. 利用H2-TPR,CO-TPD和FT-IR等表征手段,探讨了不同助催化剂的作用机理. 结果表明,Co/Pt/γ-Al2O3能显著降低富氢气氛下CO选择性氧化的温度,主要原因是Co与Pt的相互作用使Pt的电子性能发生了改变,从而削弱了Pt对CO的吸附,使催化剂表面CO的线式吸附消失; Co的添加还促进了易分解的碳酸氢盐物种的生成,同时未完全还原的CoOx物种可提供活性氧促进CO的转化. 助催化剂K一方面促进了Pt向CO反馈电子,从而活化吸附的CO,提高了催化剂的低温活性;另一方面促进了难分解的甲酸盐物种的生成,从而抑制了部分活性位,需要更高的反应温度,而较高温度下会发生氢气氧化反应的竞争,使CO选择性氧化反应的活性和选择性受到影响. 同时添加K和Co的催化剂中,K可促进CoOx的还原,使Co与Pt的相互作用变弱,即减弱了Co对Pt的助催化作用, 因此虽然其选择性有所改善,但活性介于单独添加Co或K的催化剂之间.  相似文献   

6.
负载型金催化剂在CO氧化反应中具有良好的低温活性,受到了研究者的广泛关注,其催化性能与载体的性质密切相关.氧化铝具有廉价易得、比表面积大和热稳定性好等优点.然而,作为一种非还原性载体,氧化铝提供活性氧物种的能力差,与还原性载体相比催化剂的CO氧化活性较低.理论计算和实验结果表明,在金催化剂中引入过渡金属镍能够有效促进氧分子在催化剂表面的吸附和活化,从而提升金催化剂活性.此外,过渡金属的存在能够提高金的分散度,增加活性位数目,防止在高温预处理过程中金颗粒的烧结,从而提高催化剂的活性和稳定性.基于上述考虑,本文在氧化铝纳米片合成过程中原位引入硝酸镍,以实现对氧化铝载体的改性,然后负载金并应用于CO氧化反应.结果表明,当载体中的Ni/Al摩尔比为0.05,金负载量为1wt%时,采用还原性气氛对催化剂进行预处理可以得到具有CO氧化性能优良的金催化剂, 20 oC下CO转化率即可达100%.预处理气氛能够显著影响催化活性,采用还原性气氛预处理后催化剂活性明显优于氧化性气氛预处理.采用X射线衍射(XRD)、高分辨透射电镜(HRTEM)、氢气程序升温还原(H2-TPR)、氧气程序升温脱附(O2-TPD)、CO吸附原位红外光谱(CO-DRIFT)和X射线光电子能谱(XPS)等表征手段进一步研究了镍掺杂对Au/Al2O3催化剂上CO氧化反应的促进作用机制.XRD测试未观察到明显的金或镍衍射峰,表明金或镍物种均为高分散.HRTEM结果进一步证实,引入镍物种后金颗粒的粒径由3.6 nm减小为2.4 nm,表明镍掺杂有助于提高金的分散度.而XPS结果显示,镍掺杂催化剂中金与镍存在电子转移,而镍仍以Ni O为主.H2-TPR结果表明,镍掺杂的催化剂前驱体中的金物种更容易被还原.O2-TPD结果证实,镍掺杂催化剂能够引入更多的氧空位,促进氧分子的吸附和活化,从而促进CO氧化反应的进行.CO-DRIFT结果表明,相比于氧化性气氛,采用还原性气氛预处理后金物种的电子云密度增加, CO吸附增强.而对于镍掺杂的催化剂,金物种吸附CO分子的能力进一步提高,有利于CO氧化反应的进行.综上,镍掺杂能够有效提高催化剂中金的分散度,增强催化剂对CO的吸附,促进氧气分子的吸附和活化,从而提高了催化剂的CO氧化活性.  相似文献   

7.
负载型Au催化剂因其在诸多反应过程中的高催化活性而备受研究者关注.然而针对负载型催化剂中Au物种结构的有效调控,以及催化过程中真实构-效关系的探索一直充满了挑战.用CeO2为Au物种担载基底,通过简单煅烧处理引起的CeO2结构变化,进而实现Au/CeO2之间界面作用力的调控.此研究发现Au纳米颗粒中Au0物种具备更为高效的催化室温CO氧化活性,结合多种原位表征分析,其室温条件下催化转化效率更依赖于CO吸附能力.而相比于单原子Au1和纳米Au颗粒,所制备的团簇Au/CeO2催化剂在较高温度(>50℃)展现出优异的催化CO氧化反应性能.随着温度升高,催化剂表界面O参与的MvK反应路径更易发生,因此具有更多表界面活性O物种和Auδ+位点的团簇Au/CeO2催化剂展现出最为优异的催化CO氧化性能.这些发现为高效负载型Au催化剂的制备提供了新思路并深化了对Au/CeO2催化作用机制的理解.  相似文献   

8.
介孔Al2O3负载纳米Au催化剂用于低温催化氧化CO   总被引:2,自引:0,他引:2  
 用不同模板剂合成了具有较高比表面积和较多表面碱性位的介孔Al2O3载体,并采用均相沉积-沉淀法制备了Al2O3负载纳米Au催化剂,对制备的介孔Al2O3载体及相应催化剂采用低温N2吸附法、TEM和XPS等手段进行了表征,考察了载体表面碱性对纳米Au粒子在载体表面的沉积及相应催化剂在CO氧化反应中催化性能的影响. 以CO2-TPD法测定载体表面碱性,结果表明,介孔氧化铝的表面碱性与其合成过程中所用的模板剂有关. 以表面碱性位较丰富的介孔Al2O3为载体制备的催化剂表面Au粒子分布较均匀且粒径(3.1~3.2 nm)较小,在CO完全氧化反应中催化活性最高,表明载体表面的碱性位有利于稳定其表面沉积的纳米Au粒子. XPS分析结果表明,催化剂表面的Au主要以Au0金属态形式存在,它在CO氧化反应中表现出较高的催化活性.  相似文献   

9.
孙科举 《催化学报》2016,(10):1608-1618
近年来,纳米金催化剂独特的催化性质,特别是其优异的低温催化氧化活性,引起了人们极大的研究热情.除低温选择氧化外,在精细化学品合成、大气污染物消除、氢能的转换和利用等领域也开发出了一系列有广泛应用前景的金催化反应.此外,体相金的化学惰性和纳米金的超高活性之间差异的“鸿沟”也引起了理论工作者浓厚兴趣,试图从原理上理解体相金和纳米金活性差异的根源. CO催化氧化是最具有代表性的研究金催化活性的化学反应,本文主要综述了近十多年来金催化 CO氧化反应理论计算方面的研究工作.一般认为, CO在纳米金表面的吸附是 CO氧化反应的初始步骤.密度泛函理论研究表明, CO在金表面的吸附强度主要与被吸附金原子的配位数有关:金配位数越低, CO的吸附能越强,部分研究结果表明两者之间存在近似的线性关系.我们研究发现, CO吸附强度也与被吸附金周围配位金原子的相对位置有关,其中位于正下方的配位金原子加强 CO吸附,而位于侧位的配位金原子则弱化 CO吸附,这显然削弱了 CO吸附与金配位数线性关系的可靠性.理论研究表明,在纯金表
  面上 O2吸附强度一般很弱,只有在一些特殊结构的金团簇上才有较强的吸附,但在 Au/TiO2界面及 CeO2表面上 O2吸附较强.金表面原子氧的吸附和金的表面结构有关.我们发现,原子氧倾向于在金的表面形成一种线性的 O–Au–O结构以增加其稳定性.当金表面的氧覆盖度增大时,会形成一种金氧化物薄膜结构,其结构依赖于氧的化学势和金的表面结构.纳米金催化 CO氧化反应机理可能因体系、载体等的差异而不同.大部分理论计算结果表明,在纯金表面上 O2很难直接解离形成原子氧,因此反应机理可能是吸附的 CO先与 O2反应形成了一种 CO–O2中间体,然后解离形成 CO2.在 Au/TiO2和 Au/CeO2催化剂上 CO催化氧化机理争议很大,均有计算结果支持 LH机理和 M–vK机理.另外,根据实验上观察到了负载型纳米金能直接活化分子氧的结果,理论上也提出了分子氧先解离为原子氧再与 CO反应的氧解离机理.针对如何解离分子氧问题,人们分别提出了低配位金模型、正方形金结构模型、Ti5c模型及 Au/Ti5c模型等.我们也提出了一种独特的双直线 O–Au–O模型来理解 Au/TiO2或 Au/CeO2界面解离活化分子氧.理论计算结果表明,低配位的金,金和载体之间的电荷转移,以及金所表现出的强相对论效应对于纳米金的活性影响很大.需要特别指出的是,金的强相对论效应有助于理解金表面的 CO吸附与金配位的关系、金表面原子氧的吸附特性、金氧化物薄膜的结构和分子氧的活化等过程.我们认为,金的强相对论作用导致了体相金的化学惰性以及纳米金的活性,因此相对论效应的深入研究将有助于理解金催化 CO氧化反应机理,从而有助于深层次理解纳米金催化活性来源.  相似文献   

10.
高效负载型Pd催化剂的制备及其在CO低温氧化反应中的机理探究是近年来的研究热点.普遍认为,Pd催化剂上的CO氧化反应遵循Langmuir-Hinshelwood机理:首先,CO吸附于Pd物种表面;然后,CO与催化剂表面的晶格氧发生反应转化为CO2,反应发生在金属-载体界面.另外,高分散的Pd活性物种有利于CO氧化反应.同时载体的形貌、暴露的晶面、氧空位以及孔结构等都是影响催化剂活性的重要因素.CeO2纳米管具有独特的管状特征和较高的比表面积,是一种潜在的CO低温氧化催化剂载体.本文利用乙醇还原法,以CeO2纳米管为载体,制备不同Pd含量的Pd/CeO2-nanotube纳米催化剂,并利用N2吸附脱附、X射线衍射(XRD)、透射电子显微镜(TEM)、CO程序升温脱附(CO-TPD)、X射线光电子能谱(XPS)等表征手段,探索纳米催化剂载体形貌对CO氧化反应活性的影响.氮气吸脱附结果表明,Pd/CeO2-nanotube具有较高的比表面积(58.0 m2/g),且存在介孔结构.XRD表征发现,Pd/CeO2-nanotube的衍射峰对应立方萤石型结构的CeO2的(111),(200),(220),(311)等品面.TEM结果表明,Pd/CeO2-nanotube具有均匀的纳米管形貌,其外径为40-60 nm,Pd纳米颗粒均匀分散在其表面.CO-TPD结果表明,Pd/CeO2-nanotube在1 10℃附近具有很强的脱附峰,在370℃和600℃附近分别具有较宽和较弱的脱附峰,这表明该催化剂具有较多的吸附位,且具有很强的CO吸附能力;CO不可逆吸附量计算结果表明,该催化剂上的Pd具有很高的表面分散度(23.3%),Pd颗粒尺寸为7.3 nm.XPS表征显示,Pd以pd2+的形式分散于CeO2纳米管的表面,且与载体发生相互作用,存在Pd-O-Ce键;同时该催化剂表面存在丰富的Ce3+,为反应提供更多的氧空位.0.9Pd/CeO2-nanotube纳米催化剂在CO氧化反应中表现出优良的活性,能在100℃实现CO的完全转化;通过计算发现,该催化剂具有较高的TOF值(0.63 s-1),由Arrhenius 曲线可得到该催化剂的活化能为26.5 kJ/mol.综上可见:金属活性组分的尺寸和分散度、载体的结构特征、CO吸附能力以及金属-载体间的相互作用决定催化剂的性能.Pd/CeO2-nanotube的高比表面积有利于Pd的分散;其强CO吸附能力有利于CO吸附于Pd物种表面;催化剂表面丰富的Ce3+能为反应提供更多的氧空位,Pd-O-Ce键的形成能增强金属-载体间的相互作用,有利于CO与催化剂表面品格氧发生反应.同时催化剂介孔结构有利于反应气体和产物气体的吸附和扩散,因此,Pd/CeO2-nanotube纳米催化剂在CO氧化反应中表现出优良的活性.  相似文献   

11.
The oxidation of carbon monoxide (CO) has received more attention in the last two to three decades owing to its importance in different fields. To control this CO pollution, catalytic converters have been investigated. Different types of catalysts have been used in a catalytic converter for CO emission control purposes. Platinum (Pt)-based noble metal catalysts show great potential for CO oxidation in catalytic converters with high thermal stability and tailoring flexibility. Pt metal catalysts modified with promoters such as alkali metals and reducible metal oxides have received great attention for their superior catalytic activities in CO oxidation. Temperature, close environment of the catalyst, and chemical composition in the surface layer of the catalyst have a huge effect on the active phase dispersion and O2 adsorption capacity of the Pt metal catalysts. The main difference in activities of Pt metal catalyst for CO oxidation in O2 or H2 atmosphere has found. The addition of supports in Pt metal catalysts has improved their performances and reduced their cost. These improvement strongly depends on the surface structure, morphology, number of active sites, and various Pt-O interactions. Many research articles have already been published in CO oxidation over Pt metal catalysts, but no review article dedicated to CO oxidation is available in the literature.  相似文献   

12.
氧化铈独特的氧化还原性能使其适合用作氧化反应中的催化剂或载体.氧化铈负载的过渡金属纳米粒子或孤立的单原子提供了金属-载体界面,从而降低了去除界面氧原子的能耗,提供了可以参与ManVanKulvian氧化过程的活性氧物种.CO氧化是测试氧化铈负载催化剂还原性的主要探针反应,并且它常见于在相对低温下消除CO的各种应用中.在过量H2中优先氧化CO(PROX)反应可控制CO浓度达到超低水平,以防止氢氧化电催化剂中毒.催化剂在CO氧化反应中的活性和在PROX反应中对CO和H2的选择性取决于金属物种的种类和分散性、CeO2的结构和化学性质以及催化剂的合成方法.在这篇综述中,我们总结了最近发表的关于CeO2负载的金属纳米粒子和单原子催化CO氧化和PROX反应的相关工作;以及不同的负载金属和同种金属在普通CeO2表面上的反应性.我们还总结了密度泛函理论计算中提出的最可能的反应机理;并且讨论了各种负载型金属在PROX反应中影响CO氧化选择性的因素.  相似文献   

13.
The oxidation mechanisms of CO to CO2 on graphene‐supported Pt and Pt‐Al alloy clusters are elucidated by reactive dynamical simulations. The general mechanism evidenced is a Langmuir–Hinshelwood (LH) pathway in which O2 is adsorbed on the cluster prior to the CO oxidation. The adsorbed O2 dissociates into two atomic oxygen atoms thus promoting the CO oxidation. Auxiliary simulations on alloy clusters in which other metals (Al, Co, Cr, Cu, Fe, Ni) replace a Pt atom have pointed to the aluminum doped cluster as a special case. In the nanoalloy, the reaction mechanism for CO oxidation is still a LH pathway with an activation barrier sufficiently low to be overcome at room temperature, thus preserving the catalyst efficiency. This provides a generalizable strategy for the design of efficient, yet sustainable, Pt‐based catalysts at reduced cost.  相似文献   

14.
H2‐promoted catalytic activity of oxide‐supported metal catalysts in low‐temperature CO oxidation is of great interest but its origin remains unknown. Employing an FeO(111)/Pt(111) inverse model catalyst, we herewith report direct experimental evidence for the spillover of H(a) adatoms on the Pt surface formed by H2 dissociation to the Pt?FeO interface to form hydroxyl groups that facilely oxidize CO(a) on the neighboring Pt surface to produce CO2. Hydroxyl groups and coadsorbed water play a crucial role in the occurrence of hydrogen spillover. These results unambiguously identify the occurrence of hydrogen spillover from the metal surface to the noble metal/metal oxide interface and the resultant enhanced catalytic activity of the metal/oxide interface in low‐temperature CO oxidation, which provides a molecular‐level understanding of both H2‐promoted catalytic activity of metal/oxide ensembles in low‐temperature CO oxidation and hydrogen spillover.  相似文献   

15.
The catalytic oxidation of carbon monoxide to carbon dioxide is an important process used in several areas such as respiratory protection, industrial air purification, automotive emissions control, CO clean-up of flue gases and fuel cells. Research in this area has mainly focused on the improvement of catalytic activity at low temperatures. Numerous catalyst systems have been proposed, including those based on Pt, Pd, Rh, Ru, Au, Ag, and Cu, supported on refractory or reducible carriers or dispersed in perovskites. Well known commercial catalyst formulations for room temperature CO oxidation are based on CuMn2O4 (hopcalite) and CuCoAgMnOx mixed oxides. We have applied high-throughput and combinatorial methodologies to the discovery of more efficient catalysts for low temperature CO oxidation. The screening approach was based on a hierarchy of qualitative and semi-quantitative primary screens for the discovery of hits, and quantitative secondary screens for hit confirmation, lead optimization and scale-up. Parallel IR thermography was the primary screen, allowing one wafer-formatted library of 256 catalysts to be screened in approximately 1 hour. Multi-channel fixed bed reactors equipped with imaging reflection FTIR spectroscopy or GC were used for secondary screening. Novel RuCoCe compositions were discovered and optimized for CO oxidation and the effect of doping was investigated for supported and bulk mixed oxide catalysts. Another family of active hits that compare favorably with the Pt/Al2O3 benchmark is based on RuSn, where Sn can be used as a dopant (e.g. RuSn/SiO2) and/or as a high surface area carrier (e.g., SnO2 or Sn containing mixed metal oxides). Also, RuCu binary compositions were found to be active after a reduction pretreatment with hydrogen.  相似文献   

16.
制备了氧化铝、铈锆固溶体复合氧化物负载铂、钯的双金属催化剂Pt-Pd/ Ce0.3Zr0.7O2-Al2O3,并添加3% ZrO2助剂改性,用于柴油车尾气中CO、HC和NO的催化氧化,其中贵金属负载量仅为0.68 wt%。考察了制备过程中焙烧温度对催化剂性能的影响。催化剂活性评价结果表明,与未添加ZrO2的催化剂比较。添加ZrO2明显提高了催化剂的低温氧化活性,而且焙烧温度对催化剂的氧化性能有较大影响。焙烧温度为800 ?C时,CO和C3H6的起燃温度最低,分别为168、189 ?C,焙烧温度为700 ?C时,NO转化为NO2的转化率最高,最大转化率为36%,具有较好的热稳定性。通过XRD、N2吸附-脱附、CO化学吸附、XPS、H2-TPR等表征手段考察了催化剂物理化学性质随焙烧温度的变化情况,并分析了与催化剂活性之间的关系,得到贵金属分散度、表面化学吸附氧含量、催化剂的还原性质对氧化性能有重要影响,发挥协同作用。进而可以通过优化焙烧温度提升柴油车氧化催化剂性能,对提高工业应用柴油车尾气后处理系统的净化效率有重要意义。  相似文献   

17.
苗雨欣  王静  李文翠 《催化学报》2016,(10):1721-1728
近年来,伴随全球能源危机的加剧,以及温室效应和细颗粒物等一系列环境问题出现,各国研究者正努力寻求和开发可持续利用的新能源来代替传统的化石能源.燃料电池具有能量转化效率高、对环境排放低和污染小等优点,作为一种新的环境友好型技术而广受关注.在众多的燃料电池中,质子交换膜燃料电池(PEMFC)因具有能量效率高和工作窗口温度
  低等优势而备受关注.但是, PEMFC燃料以H2为主,主要来源是烃类的重整气,但其中痕量的CO (10 ppm)将会引起Pt电极中毒,导致PEMFC性能迅速下降,因此如何有效地祛除富氢气体中的CO并尽可能减少H2的消耗具有重要研究价值.目前, CO选择氧化法(CO-PROX)是公认的最简单、廉价和有效的办法之一. CO的消除通常选用霍加拉特催化剂,虽然Cu基催化剂具有低廉的成本和较好的CO催化氧化性能,但是当反应中有H2O和CO2存在时,其活性会迅速下降. Au催化剂具有优异的低温CO催化氧化性能,但在PEMFC的工作温度窗口为80–120oC时,随着反应温度提高, H2与CO之间的竞争吸附变强,采用单组分Au催化剂难于在80–120 oC内使CO完全氧化.因此,设计并制备高效的Au催化剂来提高其在PEMFC工作温度(80–120 oC)条件下CO-PROX反应活性和选择性仍然是目前该方向的难点.氧化铈(CeO2)是一种重要的稀土化合物,由于Ce具有独特的4f电子层结构, Ce3+/Ce4+在一定条件下可以相互转化,具有较高的储放氧能力,即能够在富氧条件下储存氧,在贫氧条件下释放氧. CeO2是一种重要的氧化反应催化剂载体,是三效催化剂的主要组成部分,在净化汽车尾气方面稀土元素具有独特的优势,广泛应用于CO氧化和NOx消除等领域中.最近,本课题组以自制的氧化铝为载体,制备了K掺杂的Au-Cu/Al2O3催化剂,其在CO-PROX反应中具有较好的催化活性和稳定性.本文在此基础上,利用Au与CeO2之间的相互作用,制备了CeO2掺杂的Au/CeO2/Al2O3催化剂和K掺杂的Au-Cu/CeO2/Al2O3催化剂.表征结果发现,催化剂中Au和Au-Cu纳米粒子的尺寸均一,平均粒径分别为2.4±0.4和2.8±0.4 nm.与Au/Al2O3催化剂相比, Ce掺杂的Au催化剂具有更高的金属分散度,拓宽了其CO完全转化时的反应温度窗口(30–70 oC).对所制备的Au催化剂进一步通过拉曼光谱、H2程序升温还原和CO-红外光谱等手段分析和CO-PROX催化性能测试,可以证实Au-Cu/CeO2/Al2O3催化剂中各组分在CO-PROX反应中所起的作用.结果表明, CeO2的掺杂能增强活性组分与载体之间的相互作用,有助于提高Au-Cu纳米粒子的分散度,此外还能提高Au催化剂的还原性能,其表面形成的氧空位提高了CO-PROX反应的催化性能. Cu物种的引入显著增强了CO在Au催化剂上吸附能力.综上所述, CeO2组分对Au/Al2O3催化剂的促进作用体现在:(1)有效锚定Au和Au-Cu纳米粒子;(2)提供CO-PROX反应中的活性氧物种.  相似文献   

18.
Various well-defined Ni-Pt(111) model catalysts are constructed at atomic-level precision under ultra-high-vacuum conditions and characterized by X-ray photoelectron spectroscopy and scanning tunneling microscopy. Subsequent studies of CO oxidation over the surfaces show that a sandwich surface (NiO(1-x)/Pt/Ni/Pt(111)) consisting of both surface Ni oxide nanoislands and subsurface Ni atoms at a Pt(111) surface presents the highest reactivity. A similar sandwich structure has been obtained in supported Pt-Ni nanoparticles via activation in H(2) at an intermediate temperature and established by techniques including acid leaching, inductively coupled plasma, and X-ray adsorption near-edge structure. Among the supported Pt-Ni catalysts studied, the sandwich bimetallic catalysts demonstrate the highest activity to CO oxidation, where 100% CO conversion occurs near room temperature. Both surface science studies of model catalysts and catalytic reaction experiments on supported catalysts illustrate the synergetic effect of the surface and subsurface Ni species on the CO oxidation, in which the surface Ni oxide nanoislands activate O(2), producing atomic O species, while the subsurface Ni atoms further enhance the elementary reaction of CO oxidation with O.  相似文献   

19.
Surface immobilized polyamidoamine (PAMAM) dendrimer templated Pt nanoparticles were employed as precursors to heterogeneous catalysts. CO oxidation catalysis and in situ infrared spectroscopy were used to evaluate conditions for dendrimer removal. Infrared spectroscopy showed that PAMAM dendrimer amide bonds begin decomposing at temperatures as low as 75 degrees C. Although the amide stretches are completely removed after 3 h of oxidation at 300 degrees C, 16 h were required to reach maximum catalytic activity. Further treatment under oxidizing or reducing atmospheres did not cause substantial changes in activity. Infrared spectroscopy of the activated materials indicated that organic residues, probably surface carboxylates, are formed during oxidation. These surface species passivate the Pt NPs, and their removal was required to fully activate the catalyst. Substantially less forcing activation conditions were possible by employing a CO/O(2)/He oxidation treatment. At appropriate temperatures, CO acts as a protecting group for the Pt surface, helping to prevent fouling of the nanoparticle by organic residues. CO oxidation catalysis and infrared spectroscopy of adsorbed CO indicated that the low temperature activation treatment yielded supported nanoparticles that were substantially similar to those prepared with more forcing conditions.  相似文献   

20.
The direct methanol fuel cell (DMFC) is considered as a promising power source, because of its abundant fuel source, high energy density and environmental friendliness. Among DMFC anode materials, Pt and Pt group metals are considered to be the best electrocatalysts. The combination of Pt with some specific transition metal can reduce the cost and improve the tolerance toward CO poisoning of pure Pt catalysts. In this paper, the geometric stabilities of PtFe/PdFe atoms anchored in graphene sheet and catalytic CO oxidation properties were investigated using the density functional theory method. The results show that the Pt (Pd) and Fe atoms can replace C atoms in graphene sheet. The CO oxidation reaction by molecular O2 on PtFe–graphene and PdFe–graphene was studied. The results show that the Eley–Rideal (ER) mechanism is expected over the Langmuir–Hinshelwood mechanism for CO oxidation on both PtFe–graphene and PdFe–graphene. Further, complete CO oxidation on PtFe–graphene and PdFe–graphene proceeds via a two‐step ER reaction: CO(gas) + O2(ads) → CO2(ads) + O(ads) and CO(gas) + O(ads) → CO2(ads). Our results reveal that PtFe/PdFe commonly embedded in graphene can be used as a catalyst for CO oxidation. The microscopic mechanism of the CO oxidation reaction on the atomic catalysts was explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号