首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In this paper, we consider a class of singularly perturbed elliptical problems with homogeneous boundary conditions. We consider a regularized iterative method for solving such problems. Convergence analysis and error estimate are derived. The regularization parameter is chosen according to an a priori strategy. We give numerical results to illustrate that the method is implementable compared with numerical methods such as Shishkin and finite element schemes. The study demonstrates that the iterated regularized scheme can be considered as an alternate method for solving singularly perturbed elliptical problems.  相似文献   

2.
Summary. For the numerical solution of (non-necessarily well-posed) linear equations in Banach spaces we consider a class of iterative methods which contains well-known methods like the Richardson iteration, if the associated resolvent operator fulfils a condition with respect to a sector. It is the purpose of this paper to show that for given noisy right-hand side the discrepancy principle (being a stopping rule for the iteration methods belonging to the mentioned class) defines a regularization method, and convergence rates are proved under additional smoothness conditions on the initial error. This extends similar results obtained for positive semidefinite problems in Hilbert spaces. Then we consider a class of parametric methods which under the same resolvent condition contains the method of the abstract Cauchy problem, and (under a weaker resolvent condition) the iterated method of Lavrentiev. A modified discrepancy principle is formulated for them, and finally numerical illustrations are presented. Received August 29, 1994 / Revised version received September 19, 1995  相似文献   

3.
We consider the nonstationary iterated Tikhonov regularization in Banach spaces which defines the iterates via minimization problems with uniformly convex penalty term. The penalty term is allowed to be non-smooth to include \(L^1\) and total variation (TV) like penalty functionals, which are significant in reconstructing special features of solutions such as sparsity and discontinuities in practical applications. We present the detailed convergence analysis and obtain the regularization property when the method is terminated by the discrepancy principle. In particular we establish the strong convergence and the convergence in Bregman distance which sharply contrast with the known results that only provide weak convergence for a subsequence of the iterative solutions. Some numerical experiments on linear integral equations of first kind and parameter identification in differential equations are reported.  相似文献   

4.
Invention of wavelets and fractals have revolutionized several areas of emerging technologies, especially image processing and scientific computing. The iterated function system [2-4,13,17,18,20,25,26,29], inverse problem of images [5,14-16] and wavelet-based numerical methods [6,7,10,19,22,23] are basic in-gredients of these exciting developments. The iterated function system and the collage theorem are among the basic mathematical tools which are consequences of the Banach contraction fixed point theorem. In one of the sections of this paper we have generalized these two theorems applying a generalization of the Banach contraction fixed point theorem due to Edelstein [11]. In the other section we have studied the inverse problem of images by the iterative function system with grey-level in the context of Besov space, extending a result of Forte and Vrscay [16].  相似文献   

5.
In this paper, we study the global convergence for the numerical solutions of nonlinear Volterra integral equations of the second kind by means of Galerkin finite element methods. Global superconvergence properties are discussed by iterated finite element methods and interpolated finite element methods. Local superconvergence and iterative correction schemes are also considered by iterated finite element methods. We improve the corresponding results obtained by collocation methods in the recent papers [6] and [9] by H. Brunner, Q. Lin and N. Yan. Moreover, using an interpolation post-processing technique, we obtain a global superconvergence of the O(h 2r )-convergence rate in the piecewise-polynomial space of degree not exceeding (r–1). As a by-product of our results, all these higher order numerical methods can also provide an a posteriori error estimator, which gives critical and useful information in the code development.  相似文献   

6.
A new class of approximate inverses for arrowhead and special tridiagonal linear systems, based on the concept of sparse approximate Choleski-type factorization procedures, are introduced for computing fast explicit approximate inverses. Explicit preconditioned iterative schemes in conjunction with approximate inverse matrix techniques are presented for the efficient solution of symmetric linear systems. A theorem on the rate of convergence of the explicit preconditioned conjugate gradient scheme is given and estimates of the computational complexity are presented. Applications of the proposed method on linear and nonlinear systems are discussed and numerical results are given.  相似文献   

7.
In this paper, we consider the composition of two independent processes: one process corresponds to position and the other one to time. Such processes will be called iterated processes. We first propose an algorithm based on the Euler scheme to simulate the trajectories of the corresponding iterated processes on a fixed time interval. This algorithm is natural and can be implemented easily. We show that it converges almost surely, uniformly in time, with a rate of convergence of order 1/4 and propose an estimation of the error. We then extend the well known Feynman-Kac formula which gives a probabilistic representation of partial differential equations (PDEs), to its higher order version using iterated processes. In particular we consider general position processes which are not necessarily Markovian or are indexed by the real line but real valued. We also weaken some assumptions from previous works. We show that intertwining diffusions are related to transformations of high order PDEs. Combining our numerical scheme with the Feynman-Kac formula, we simulate functionals of the trajectories and solutions to fourth order PDEs that are naturally associated to a general class of iterated processes.  相似文献   

8.

Text

In this paper, Chen's iterated integrals are generalized by interpolation of functions of the positive integer number of times which particular forms are iterated in integrals along specific paths, to certain complex values. These generalized iterated integrals satisfy both an additive iterative property and comultiplication formula. In a particular example, a (non-classical) multiplicative iterative property is also shown to hold. After developing this theory in the first part of the paper we discuss various applications, including the expression of certain zeta functions as complex iterated integrals (from which an obstruction to the existence of a contour integration proof of the functional equation for the Dedekind zeta function emerges); a way of thinking about complex iterated derivatives arising from a reformulation of a result of Gel'fand and Shilov in the theory of distributions; and a direct topological proof of the monodromy of polylogarithms.

Video

For a video summary of this paper, please click here or visit http://www.youtube.com/watch?v=dsVvo7s8BYU.  相似文献   

9.
In the present paper, we present smoothing procedures for iterative block methods for solving nonsymmetric linear systems of equations with multiple right-hand sides. These procedures generalize those known when solving one right-hand linear systems. We give some properties of these new methods and then, using these procedures we show connections between some known iterative block methods. Finally we give some numerical examples.  相似文献   

10.
本文给出了叠压缩型映照不动点迭代算法的三种收敛速度,作为应用,给出了多元非线方程组解的存在性定量的一个推广。  相似文献   

11.
Summary The existence of attractive cycles constitutes a serious impediment to the solution of nonlinear equations by iterative methods. This problem is illustrated in the case of the solution of the equationz tanz=c, for complex values ofc, by Newton's method. Relevant results from the theory of the iteration of rational functions are cited and extended to the analysis of this case, in which a meromorphic function is iterated. Extensive numerical results, including many attractive cycles, are summarized.This work was supported in part by the Natural Sciences and Engineering Research Council of Canada under grants A3028 and A7691  相似文献   

12.
The numerical simulation of semiconductor devices is extremely demanding in term of computational time because it involves complex embedded numerical schemes. At the kernel of these schemes is the solution of very ill‐conditioned large linear systems. In this paper, we present the various ingredients of some hybrid iterative schemes that play a central role in the robustness of these solvers when they are embedded in other numerical procedures. On a set of two‐dimensional unstructured mixed finite element problems representative of semiconductor simulation, we perform a fair and detailed comparison between parallel iterative and direct linear solution techniques. We show that iterative solvers can be robust enough to solve the very challenging linear systems that arise in those simulations. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
Tikhonov regularization is a popular method for the solution of linear discrete ill-posed problems with error-contaminated data. Nonstationary iterated Tikhonov regularization is known to be able to determine approximate solutions of higher quality than standard Tikhonov regularization. We investigate the choice of solution subspace in iterative methods for nonstationary iterated Tikhonov regularization of large-scale problems. Generalized Krylov subspaces are compared with Krylov subspaces that are generated by Golub–Kahan bidiagonalization and the Arnoldi process. Numerical examples illustrate the effectiveness of the methods.  相似文献   

14.
We develop and experimentally study the algorithms for solving three-dimensionalmixed boundary value problems for the Laplace equation in unbounded domains. These algorithms are based on the combined use of the finite elementmethod and an integral representation of the solution in a homogeneous space. The proposed approach consists in the use of the Schwarz alternating method with consecutive solution of the interior and exterior boundary value problems in the intersecting subdomains on whose adjoining boundaries the iterated interface conditions are imposed. The convergence of the iterative method is proved. The convergence rate of the iterative process is studied analytically in the case when the subdomains are spherical layers with the known exact representations of all consecutive approximations. In this model case, the influence of the algorithm parameters on the method efficiency is analyzed. The approach under study is implemented for solving a problem with a sophisticated configuration of boundaries while using a high precision finite elementmethod to solve the interior boundary value problems. The convergence rate of the iterations and the achieved accuracy of the computations are illustrated with some numerical experiments.  相似文献   

15.
We give general affine invariant conditions for the monotone convergence of a class of iterative procedures for solving nonlinear operator equations. The theorems obtained in the paper generalize and unify many known results and provide a convenient framework for studying new iterative procedures  相似文献   

16.
It is shown that a class of finite Bäcklund transformations introduced by Loewner in 1950 in a gasdynamics context may be represented as compound gauge and Darboux-type transformations. This result is used to construct iterated versions of the Loewner transformations based on established procedures in soliton theory.  相似文献   

17.
提出了一类具有参数平方收敛的求解非线性方程的线性插值迭代法,方法以Newton法和Steffensen法为其特例,并且给出了该类方法的最佳迭代参数.数值试验表明,选用最佳迭代参数或其近似值的新方法比Newton法和Steffensen方法更有效.  相似文献   

18.
Methods in optimal control and the adjoint-equation theory are applied to the design of iterative algorithms for the numerical solution of the nonstationary Stokes system perturbed by a skew-symmetric operator. A general scheme is presented for constructing algorithms of this kind as applied to a broad class of problems. The scheme is applied to the nonstationary Stokes equations, and the convergence rate of the corresponding iterative algorithm is examined. Some numerical results are given.  相似文献   

19.
A new and general approach to the understanding and analysis of widely used iterative methods for the numerical solution of the equation Ax = b is presented. This class of algorithms, which includes CGN, GMRES. ORTHOMIN, BCG, CGS, and others of current importance, utilizes residual norm minimizing procedures, such as those often found under the general names Galerkin method, Arnoldi method, Lanczos method, and so on. The view here is different: the needed error minimizations are seen trigonometrically. © 1997 John Wiley & Sons, Ltd.  相似文献   

20.
A numerical method for solving a special class of optimal control problems is given. The solution is based on state parametrization as a polynomial with unknown coefficients. This converts the problem to a non-linear optimization problem. To facilitate the computation of optimal coefficients, an improved iterative method is suggested. Convergence of this iterative method and its implementation for numerical examples are also given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号