首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li-N dual-doped p-type ZnO (ZnO:(Li, N)) thin films are prepared by pulsed laser deposition. The optical properties are studied using temperature-dependent photoluminescence. The Lizn-No complex acceptor with an energy 1evel of 138 me V is identified from the free-to-neutral-acceptor (e, A0 ) emission. The Haynes factor is about 0.087 for the Lizn-No complex acceptor, with the acceptor bound-exciton binding energy of 12meV. Another deeper acceptor state located at 248 meV, also identified from the (e, A0) emission, is attributed to zinc vacancy acceptor. The two acceptor states might both contribute to the observed p-type conductivity in ZnO:(Li,N).  相似文献   

2.
The effects of annealing temperature on the structural and optical properties of ZnO films grown on Si (100) substrates by sol-gel spin-coating are investigated. The structural and optical properties are characterized by x-ray diffraction, scanning electron microscopy and photoluminescence spectra. X-ray diffraction analysis shows the crystal quality of ZnO films becomes better after annealing at high temperature. The grain size increases with the temperature increasing. It is found that the tensile stress in the plane of ZnO films first increases and then decreases with the annealing temperature increasing, reaching the maximum value of 1.8 GPa at 700℃. PL spectra of ZnO films annealed at various temperatures consists of a near band edge emission around 380 nm and visible emissions due to the electronic defects, which are related to deep level emissions, such as oxide antisite (OZn), interstitial oxygen (Oi), interstitial zinc (Zni) and zinc vacancy (VZn^-), which are generated during annealing process. The evolution of defects is analyzed by PL spectra based on the energy of the electronic transitions.  相似文献   

3.
The effects of annealing on the chemical states of N dopant, electrical, and optical properties of N-doped ZnO film grown by molecular beam epitaxy (MBE) are investigated. Both the as-grown ZnO:N film and the film annealed in N2 are of n-type conductivity, whereas the conductivity converts into p-type conductivity for the film annealed in O2. We suggest that the transformation of conductivity is ascribed to the change in ratio of the N molecular number on O site (N2)O to the N atom number on O site (NO) in ZnO:N films under the various annealed atmosphere. For the ZnO:N film annealed in N2, the percentage content of (N2)O is larger than that of NO, i.e.the ratio >1, resulting in the n-type conductivity. However, in the case of the ZnO:N film annealed in O2, the percentage content of (N2)O is fewer than that of NO, i.e., the ratio <1, giving rise to the p-type conductivity. There is an obvious difference between low-temperature (80K) PL spectra of ZnO:N film annealed in N2 and that of ZnO:N film annealed in O2. An emission band located at 3.358eV is observed in the spectra of the ZnO:N film after annealed in N2, this emission band is due to donor-bound exciton (D0X). After annealed in O2, the PL of the donor-bound exciton disappeared, an emission band located at 3.348eV is observed, this emission band is assigned to acceptor-bound exciton (A0X).  相似文献   

4.
High quality Co-doped ZnO thin films are grown on single crystalline Al2O3(0001) and ZnO(0001) substrates by oxygen plasma assisted molecular beam epitaxy at a relatively lower substrate temperature of 450℃. The epitaxial conditions are examined with in-situ reflection high energy electron diffraction (RHEED) and ex-situ high resolution x-ray diffraction (HRXRD). The epitaxial thin films are single crystal at film thickness smaller than 500nm and nominal concentration of Co dopant up to 20%. It is indicated that the Co cation is incorporated into the ZnO matrix as Co^2+ substituting Zn^2+ ions. Atomic force microscopy shows smooth surfaces with rms roughness of 1.9 nm. Room-temperature magnetization measurements reveal that the Co-doped ZnO thin films are ferromagnetic with Curie temperatures Tc above room temperature.  相似文献   

5.
ZnO thin films have been grown on thin Si3N4 membranes and (001) sapphire substrates by an ultraviolet-assisted pulsed laser deposition (UVPLD) technique. The microstructure of the films grown on Si3N4 membranes, investigated by transmission electron microscopy, showed that crystalline and textured films can be grown by UVPLD at a substrate temperature of only 100 °C. For deposition temperatures higher than 400 °C, ZnO films grown on sapphire substrates were found to be epitaxial by Rutherford backscattering (RBS) and X-ray diffraction measurements. The minimum yield of channeling RBS spectra recorded from films deposited at 550 °C was around 2% and the FWHM of the rocking curve for the (002) diffraction peak was 0.17°; these values are similar to those recorded from ZnO layers grown by conventional PLD at 750 °C.  相似文献   

6.
Optical properties of p-type ZnO doped by lithium and nitrogen   总被引:1,自引:0,他引:1  
A lithium and nitrogen doped p-type ZnO (denoted as ZnO: (Li, N)) film was prepared by RF-magnetron sputtering and post annealing techniques with c-Al2O3 as substrate. Its transmittance was measured to be above 95%. Three dominant emission bands were observed at 3.311, 3.219 and 3.346 eV, respectively, in the 80 K photoluminescence (PL) spectrum of the p-type ZnO:(Li, N), and are attributed to radiative electron transition from conduction band to a LiZn-N complex acceptor level (eFA), radiative recombination of a donor-acceptor pair and recombination of the LiZn-N complex acceptor bound exciton, respectively, based on temperature-dependent and excitation intensity-dependent PL measurement results. The LiZn-N complex acceptor level was estimated to be about 126 meV above the valence band by fitting the eFA data obtained in the temperature-dependent PL spectra.  相似文献   

7.
ZnO films prepared at different temperatures and annealed at 900^o C in oxygen are studied by photoluminescence (PL) and x-ray photoelectron spectroscopy (XPS). It is observed that in the PL of the as-grown films the green luminescence (GL) and the yellow luminescence (YL) are related, and after annealing the GL is restrained and the YL is enhanced. The 0 ls XPS results also show the coexistence of oxygen vacancy (Vo) and interstitial oxygen (Oi) before annealing and the quenching of the Vo after annealing. By combining the two results it is deduced that the GL and YL are related to the Vo and Oi defects, respectively.  相似文献   

8.
TiNi thin films with BaTiO3 and PbZr0.52Ti0.48O3 (PZT) as buffer layers were deposited on Si(100) substrates by the pulsed laser deposition (PLD) method. Buffer layers (BaTiO3 and PZT) were deposited at 600 °C in oxygen (O2) environment and TiNi films were deposited on the top of the buffer layer in presence of 15 mTorr nitrogen (N2) at various deposition temperatures (50, 300, and 500 °C). Synthesis and characterization of TiNi films were investigated from the crystallographic point of view by using X-ray diffractometer (XRD) and atomic force microscope (AFM) techniques. It is found that buffer layer of BaTiO3 and PZT have improved the crystallinity of TiNi films deposited at higher temperatures. The TiNi/PZT film was uniform compared to TiNi/BaTiO3 film with the exception of agglomerates that appeared throughout the layer.  相似文献   

9.
采用射频磁控溅射法在石英玻璃衬底上制备了ZnO:Mn薄膜, 结合N+ 注入获得Mn-N共掺ZnO薄膜, 进而研究了退火温度对其结构及室温铁磁性的影响. 结果表明, 退火后ZnO:(Mn, N) 薄膜中Mn2+和N3-均处于ZnO晶格位, 没有杂质相生成. 退火温度的升高 有助于修复N+注入引起的晶格损伤, 同时也会让N逸出薄膜, 导致受主(NO)浓度降低. 室温铁磁性存在于ZnO:(Mn, N)薄膜中, 其强弱受NO浓度的影响, 铁磁性起源可采用束缚磁极化子模型进行解释.  相似文献   

10.
ZnO:N thin films were deposited on sapphire substrate by metal organic chemical vapor deposition with NH3 as N-doping sources. The reproducible p-type ZnO:N film with hole concentration of ∼1017 cm−3 was successfully achieved by subsequent in situ thermal annealing in N2O plasma protective ambient, while only weak p-type ZnO:N film with remarkably lower hole concentration of ∼1015 cm−3 was obtained by annealing in O2 ambient. To understand the mechanism of the p-type doping behavior of ZnO:N film, X-ray photoelectron spectroscopy (XPS) and soft X-ray absorption near-edge spectroscopy (XANES) measurements have been applied to investigate the local electronic structure and chemical states of nitrogen atoms in ZnO:N films.  相似文献   

11.
Bi3.25La0.75 Ti3O12 (BLT) ferroelectric thin films are deposited by sol-gel method and annealed for crystallizaion in total l eccm N2/02 mixed gas with various ratio at 750℃ for 30rain. The effect of crystallization ambient on the structural and ferroelectric properties of the BLT films is studied. The growth direction and grain size of BLT film are revealed to affect ferroeleetric properties. Alter the BLT film is annealed in 20%O2, the largest P~ value is obtained, which is ascribed to an increase of random orientation and large grain size. The fatigue property is improved with the concentration of oxygen in the ambient increasing, which is ascribed to annealing in the ambient with high concentrated oxygen adequately decreasing the defects related to lack of oxygen.  相似文献   

12.
Zn1-xMnxO (x = O.Olq3.1) thin films with a Curie temperature above 300K are deposited on Al2O3 (0001) substrates by pulsed laser deposition. X-ray diffraction (XRD), ultraviolet (UV)-visible transmission and Raman spectroscopy are employed to characterize the microstructural properties of these films. Room temperature ferromagnetism is observed by superconducting quantum interference device (SQUID). The results indicate that Mn doping introduces the incorporation of Mn^2+ ions into the ZnO host matrix and the insertion of Mn^2+ ions increases the lattice defects, which is correlated with the ferromagnetism of the obtained films. The doping concentration is also proven to be a crucial factor for obtaining highly ferromagnetic Zn1-xMnxO films.  相似文献   

13.
Parshina  L. S.  Novodvorsky  O. A.  Panchenko  V. Ya.  Khramova  O. D.  Cherebilo  Ye. A.  Lotin  A. A.  Wenzel  C.  Trumpaicka  N.  Bartha  J. W. 《Laser Physics》2011,21(4):790-795
The production of n- and p-type high-quality film structures is a foreground task in tackling the problem of growing the light-emitting p-n junctions based on zinc oxide. The ZnO:N and ZnO:P thin-film samples are produced from ceramic targets using the pulsed laser deposition. Zn3N2, MgO, and Zn3P2 are introduced in the ZnO ceramic targets for the fabrication of the p-type ZnO films. Gases O2 and N2O are used as buffer gases. The thermal annealing of the ZnO films is employed. The resistance and photoluminescence (PL) spectra of the ZnO films are measured prior to and after annealing. The dependence of the ZnO PL peak amplitude and position prior to and after annealing on the level of doping with nitrogen and phosphorus is established. The PL characteristics of the films are studied at cw optical excitation using a He-Cd laser with a radiation wavelength of 325 nm. The PL spectra in the interval 300–700 nm are recorded by an HR4000 Ocean Optics spectrometer in the temperature range 10–400 K. The effect of the conditions for the film deposition on the PL spectra is analyzed. The effect of the N- and P-doping level of the ZnO films on the PL intensity of the films and the position of the PL bands in the UV region is investigated. The short-wavelength (250–400 nm) transmission spectra of the ZnO:P films are measured. The effect of the P-doping level on the band gap of the ZnO films is studied.  相似文献   

14.
Samples of p-type ZnO:N films were prepared on glass substrates by thermal oxidation of Zn3N2 precursor, which was produced by reactive magnetron sputtering with a metallic zinc target in Ar/N2 working gas. The microstructures and the electrical and optical properties of the samples were systematically investigated as a function of the annealing temperature. The results indicate that the annealing temperature has strong effects on the conductivity and photoluminescence (PL) properties of the obtained ZnO:N films. With an annealing temperature of 500 °C in oxygen flux, ZnO:N samples show the best p-type characteristics. The doping mechanism and the doping efficiency are briefly discussed based on the experimental results.  相似文献   

15.
Mn和N共掺ZnO稀磁半导体薄膜的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
使用对Zn2N3:Mn薄膜热氧化的方法成功制备了高含N量的Mn和N共掺ZnO的稀磁半导体薄膜.在没有N离子共掺的情况下,ZnO:Mn薄膜的铁磁性非常微弱;如果进行N离子的共掺杂,就会发现ZnO:Mn薄膜在室温下表现出非常明显的铁磁性,饱和离子磁矩为0.23 μB—0.61 μB.这说明N的共掺激发了ZnO:Mn薄膜中的室温铁磁性,也就是受主的共掺引起的空穴有利于ZnO中二价Mn离子的铁磁性耦合,这和最近的相关理论研究符合很好. 关键词: 磁性半导体 受主掺杂 空穴媒介的铁磁性  相似文献   

16.
A dual-acceptor doping method was proposed to produce p-type conduction in ZnO. Both nitrogen and phosphorus were used as the p-type doping agents. ZnO:(N, P) films were prepared by spray pyrolysis. The p-type conduction was achieved by thermal annealing at appropriate temperatures (500-700 °C) for 20 min in O2 ambient. The lowest resistivity of , with a hole concentration and Hall mobility of 5.3×1017 cm−3 and 0.94 cm2 V −1 s−1, respectively, was obtained at an optimal annealing temperature of 600 °C. The p-type behavior was reproducible and stable. The introduction of nitrogen and phosphorus in ZnO were identified by secondary ion mass spectroscopy.  相似文献   

17.
N-doped ZnO films were produced using N2 as N source by metal-organic chemical vapor deposition (MOCVD) system which has been improved with radio-frequency (RF)-assisted equipments. The data of secondary ion mass spectroscopy (SIMS) indicate that the concentration of N in N-doped ZnO films is around 5 × 1020 cm−3, implying that sufficient incorporation of N into ZnO can be obtained by RF-assisted equipment. On this basis, the structural, optical and electrical properties of Al-N codoped ZnO films were studied. Then, the effect of RF power on crystal quality, surface morphologies, optical properties was analyzed using X-ray diffraction, atomic force microscopy and photo-luminescence methods. The results illustrate that the RF plasma is the key factor for the improvement of crystal quality. Then the observation of A0X recombination associated with NO acceptor in low-temperature PL spectrum proved that some N atoms have occupied the positions of O atoms in ZnO films. Hall measurements shown that p-type ZnO film deposited on quartz glasses was obtained when RF power was 150 W for the Al-N codoped ZnO films, while the resistivity of N-doped ZnO films was rather high. Compared with the Al-doped ZnO film, the obviously increased resistivity of codoped films indicates that the formation of NO acceptors compensate some donors in ZnO films effectively.  相似文献   

18.
Using a pulsed laser deposition (PLD) process on a ZnO target in an oxygen atmosphere, thin films of this material have been deposited on Si(111) substrates. An Nd: YAG pulsed laser with a wavelength of 1064 nm was used as the laser source. The influences of the deposition temperature, laser energy, annealing temperature and focus lens position on the crystallinity of ZnO films were analyzed by X-ray diffraction. The results show that the ZnO thin films obtained at the deposition temperature of 400°C and the laser energy of 250 mJ have the best crystalline quality in our experimental conditions. The ZnO thin films fabricated at substrate temperature 400°C were annealed at the temperatures from 400°C to 800°C in an atmosphere of N2. The results show that crystalline quality has been improved by annealing, the optimum temperature being 600°C. The position of the focusing lens has a strong influence on pulsed laser deposition of the ZnO thin films and the optimum position is 59.5 cm from the target surface for optics with a focal length of 70 cm.   相似文献   

19.
We performed first-principle total-energy calculations to investigate the mechanism for the realization of high quality p-type ZnO codoped with lithium and nitrogen. We find that the higher hole concentrations measured in the codoped ZnO is related to decreased ionization energy of acceptors and reduction of compensations. The dual acceptor NO-LiZn complex proposed in experiments is unstable. While in the (LiI-NO)-LiZn complex, where acceptor LiZn binds to the passivated (LiI-NO) complex is stable and acts as a single acceptor. The activation energy of this complex is about 60 meV lower than that of LiZn in Li-monodoped ZnO. The formation of inactive (LiI-NO) complexes creates a fully occupied impurity band just above the valence band maximum of ZnO. Thus Li atoms binding to this complex is activated by the electrons from the complex state rather than from the host states, accounting for decreased activation energy. Besides, LiI+ and NO bind tightly through the Coulomb interaction. Such binding will suppress the amount of compensating donor LiI and limit the compensation for the desired acceptor LiZn.  相似文献   

20.
The optical properties of N-doped ZnO films grown by pulsed laser deposition are examined for which zinc nitride is used as the source of nitrogen. The motivation for this study is to determine if nitrogen-related acceptor state formation can be achieved in ZnO films using Zn3N2 doping in the ablation target. The films were deposited in oxygen or nitrogen on c-plane sapphire. Photoluminescence measurements at 20 K reveal a 3.31 eV acceptor-bound exciton emission due to nitrogen substitution on the oxygen site, donor-acceptor pair emission at 3.23 ± 1 eV and free electron-acceptor at 3.27 eV. The binding energy of the N-related acceptor is estimated to be in the range of 170-15 meV. While the as-deposited films were n-type, thermal annealing in oxygen yielded insulating behavior, consistent with compensating acceptor states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号