首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
以引发单体为基础,通过两种可控聚合方法,即原子转移自由基聚合(ATRP)和开环易位聚合(ROMP)的联用,合成一种新型侧链含偶氮苯基团的接枝聚合物刷.含叔溴的降冰片烯引发剂首先引发偶氮苯单体的ATRP反应,生成聚合物接枝链,每条接枝链上都带有偶氮苯基团;然后,将具有高环张力降冰片烯的ATRP聚合物作为大分子单体,在第三代Grubbs催化剂的引发下进行ROMP反应,生成结构明确的新型接枝共聚物.其主链每个单体单元上均含有一条带偶氮苯基团的接枝链.最后,研究此类接枝共聚物在紫外与可见光照射下的光响应性能,并用UV-Vis分光光度计研究其在溶液中的顺反异构化过程.  相似文献   

2.
近期研究发现两亲性嵌段共聚物刷能引发“有序自发乳化”,一步法制备有序多孔光晶微球.上述研究主要基于侧链为线形聚合物的嵌段共聚物刷,而侧链拓扑结构变化对乳液受限自组装的影响尚不明确.本工作中设计合成了亲水和疏水的降冰片烯基楔形单体,并通过顺序开环易位聚合(ROMP)成功合成了一类两亲性树枝状嵌段共聚物刷.通过核磁氢谱(1H-NMR)清晰表征了产物的化学结构,凝胶渗透色谱(GPC)表明共聚物的分子量呈较窄的单峰分布,聚合反应过程具有较好的可控性.通过改变单体和催化剂的比例获得不同分子量的共聚物刷,利用凝胶渗透色谱联用光散射(GPC-MALS)研究了侧链结构对聚合物溶液构象的影响,结果显示一代树枝状共聚物刷表现为无规线团构象,而二代产物则呈现棒状构象,单个聚合物链的原子力(AFM)表征证实了上述结果.  相似文献   

3.
以聚乙烯亚胺(PEI)为大分子引发剂,辛酸亚锡为催化剂,引发对二氧环己酮(PDO)单体开环聚合,通过graft from法制备了聚乙烯亚胺接枝聚对二氧环己酮接枝共聚物(PEI-g-PPDO).通过FTIR、1H-NMR、1H-13C-HMQC等对共聚物的分子结构进行了表征.共聚产物的接枝链长度、亲疏水链段含量等可以通过反应物中单体的含量进行有效调控;用DSC对共聚物的热性能和结晶性能研究表明,接枝链段长度越大、PPDO链段含量越高,共聚物的结晶性能也越好.采用芘探针法初步研究了共聚物在水中的胶束化行为,PEI-g-PPDO接枝共聚物在水中可以形成较稳定的聚集体.  相似文献   

4.
利用原子转移自由基聚合(ATRP)制备了中间链段含对氰基偶氮苯尾挂液晶基元的PMAA-b-PMAZOCN-b-PMAA两亲性三嵌段共聚物.首先合成了含有偶氮苯液晶基元的甲基丙烯酸酯单体;再使用小分子双端引发剂,以对壬基联二吡啶、溴化亚铜为催化剂,通过ATRP反应制备了含偶氮苯液晶侧基的双端大分子引发剂.进一步以氯化亚铜为催化剂,用该大分子引发剂引发甲基丙烯酸叔丁酯聚合,制备了结构规则的PtBMA-b-PMAZOCN-PtBMA三嵌段共聚物.通过在三氟乙酸作用下的选择性水解,将PtBMA段中的甲基丙烯酸叔丁酯单体单元转化为甲基丙烯酸,得到了两端亲水,中间疏水的两亲性ABA三嵌段共聚物.用1H-NMR、GPC、PLM、DSC等对产物进行了表征.并利用溶剂诱导微相分离的方法,研究了该共聚物在THF/水混合溶剂中的自组装行为.TEM结果显示,在采用的亲疏水链段比例的条件下,得到了囊泡结构.囊泡结构的平均直径在300~500 nm.在固态下经过紫外光照射,囊泡结构转变为实心胶体球.  相似文献   

5.
首先以聚乙二醇单甲醚(mPEG-OH)为单体,采用经典的盖布瑞尔伯胺合成法合成了端氨基聚乙二醇单甲醚(mPEG-NH_2);然后以mPEG-NH_2为引发剂,S-苄基L-半胱氨酸N-羧酸内酸酐(BCys-NCA)为原料,通过N-羧酸内酸酐(NCA)开环聚合反应和液氨/钠处理脱除侧链上的保护基团,合成了两亲性嵌段共聚物甲氧基聚乙二醇-b-聚L-半胱氨酸(mPEG-b-PCys)。采用傅里叶变换红外光谱、核磁共振氢谱对聚合物的结构和组成进行了表征。结果表明:成功制备了侧链具有还原性巯基的两亲性嵌段共聚物mPEG-b-PCys,并且其聚合度可控性良好。  相似文献   

6.
以聚丙烯酰胺(PAM)为大分子引发剂, 采用开环聚合方法, 在N,N-二甲基甲酰胺(DMF)中引发L-谷氨酸苄酯环内酸酐(BLG-NCA)聚合合成了两亲性聚丙烯酰胺/聚L-谷氨酸苄酯接枝共聚物(PAM-g-BLG), 采用IR, 1H NMR和GPC方法对共聚物结构进行了表征; 用芘作荧光探针, 研究了共聚物胶束的形成及其临界胶束浓度(cmc), 利用动态光散射(DLS)和透射电镜(TEM)研究了胶束的粒径分布和形态. 结果表明, PAM能够引发BLG-NCA开环聚合得到接枝共聚物, 在一定条件下接枝共聚物能够形成球形的稳定胶束, cmc值和胶束粒径随着共聚物中疏水性聚L-谷氨酸苄酯(PBLG)链段含量的增加而减小.  相似文献   

7.
综述了基于可控/活性正离子聚合方法及通过接出接枝(grafting from)、接出接枝(grafting onto)和大分子单体(macromonomer)三种合成策略来设计制备接枝共聚物的研究进展,详细概括了大分子引发剂结构、支链结构、大分子单体结构、大分子链上引发活性点以及官能基团的分布、支链长度及路易斯酸性质等因素对接枝共聚反应的影响规律和不同接枝共聚物的设计合成,总结了上述三种不同合成路径的各自特点,进一步阐述所制备的接枝共聚物在特定环境中的微观结构、形态与外界条件响应性,探讨接枝共聚物的潜在应用领域。  相似文献   

8.
采用大单体与小单体共聚的技术,通过自由基引发溶液聚合,合成了一系列水溶性梳状聚合物———聚丙烯酸接枝聚乙二醇单甲醚(PAA-g-mPEG).制备过程分两步进行,首先合成大单体聚乙二醇单甲醚丙烯酸酯,然后将大单体与丙烯酸单体共聚,合成了梳状聚合物.通过控制反应条件,获得了一系列主链和支链组成比不同的接枝共聚物.用傅立叶变换红外光谱(FT-IR)和核磁共振氢谱(1H-NMR)表征了共聚物的结构,并对其侧链的结晶行为进行了研究.采用差热扫描量热法(DSC)表征并分析了不同侧链长度的mPEG的热性能及其结晶情况.利用相差显微镜和原子力显微镜(AFM)观察薄膜的结晶形貌,表明梳状聚合物的侧链mPEG在受限条件下的薄膜结晶形貌为高度支化的晶体,初步分析了mPEG链长及其在共聚物中的重量百分含量对晶体形貌的影响.  相似文献   

9.
通过环氧丙醇(GL)与环氧乙烷(EO)的阴离子顺序开环聚合制备了水溶性嵌段共聚物PEO-b-PGL, 以PGL嵌段每个重复单元的侧羟基为引发点进一步引发ε-己内酯(CL)的开环聚合, 合成了结构规整的以聚环氧乙烷(PEO)为主链的两亲性接枝共聚物(PEO-b-PGL-g-PCL). 研究了PEO-b-PGL-g-PCL在水相中的自组装行为, 采用稳态荧光探针法测定了胶束的临界胶束浓度(cmc). 以疏水性药物阿霉素(DOX)为模型药物, 研究了两亲性接枝共聚物的化学组成对药物的扩散释放以及降解释放行为的影响.  相似文献   

10.
通过苯乙烯 (St)与 4 对氯甲基苯乙烯 (CMS)进行氮氧稳定自由基共聚合反应 ,合成了二元共聚物P(St co CMS) ,并以此共聚物引发丙烯酸丁酯进行原子转移自由基聚合 ,成功地合成了结构明晰的以聚苯乙烯为主链、聚丙烯酸丁酯为支链的接枝共聚物 ,研究了共聚合反应动力学 .P(St co CMS)和接枝共聚物的结构通过1 H NMR得到确认 ,并表征了接枝共聚物平均侧链数目和平均侧链长度  相似文献   

11.
A novel amphiphilic graft copolymer consisting of hydrophilic poly(acrylic acid) backbones and hydrophobic poly(butyl methacrylate) side chains was synthesized by successive atom transfer radical polymerization followed by hydrolysis of poly‐(methoxymethyl acrylate) backbone. A grafting‐from strategy was employed for the synthesis of graft copolymers with narrow molecular weight distributions (polydispersity index < 1.40). Hydrophobic side chains were connected to the backbone through stable C? C bonds instead of ester connections. Poly(methoxymethyl acrylate) backbone was easily hydrolyzed to poly(acrylic acid) backbone with HCl without affecting the hydrophobic side chains. The amphiphilic graft copolymer could form stable micelles in water. The critical micelle concentration in water was determined by a fluorescence probe technique. The morphology of the micelles was preliminarily explored with transmission electron microscopy and was found to be spheres. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6857–6868, 2006  相似文献   

12.
The present paper covers the poly (ethylene oxide) macromer with vinyl benzyl terminal group (PEO-VB) prepared by deactivation of the alkoxide function of mono-functional "living" PEO chains with vinyl benzyl chloride (VBC). The obtained macromers were subjected to careful purification and detailed characterization. A new kind of amphiphilic polystyrene-g-poly(ethylene oxide) (PS-g-PEO) with both mi-crophase separated and PEO side chains was synthesized from radical copolymerization of PEO-VB macromer with styrene monomer. An improved purification method, referred as "selective dissolvation", was established for the isolation of graft copolymers from the grafting products, and the purity and yield of the purified copolymers were satisfactory. The well-defined structure of the purified copolymers was confirmed by IR, 1H NMR and GPC. The bulk composition of the graft copolymers was determined by a well-established first derivative UV spectrometry. Various experimental parameters controlling the copolymeri  相似文献   

13.
A series of well‐defined amphiphilic graft copolymers containing hydrophilic poly(acrylic acid) (PAA) backbone and hydrophobic poly(vinyl acetate) (PVAc) side chains were synthesized via sequential reversible addition‐fragmentation chain transfer (RAFT) polymerization followed by selective hydrolysis of poly(tert‐butyl acrylate) backbone. A new Br‐containing acrylate monomer, tert‐butyl 2‐((2‐bromopropanoyloxy)methyl) acrylate, was first prepared, which can be polymerized via RAFT in a controlled way to obtain a well‐defined homopolymer with narrow molecular weight distribution (Mw/Mn = 1.08). This homopolymer was transformed into xanthate‐functionalized macromolecular chain transfer agent by reacting with o‐ethyl xanthic acid potassium salt. Grafting‐from strategy was employed to synthesize PtBA‐g‐PVAc well‐defined graft copolymers with narrow molecular weight distributions (Mw/Mn < 1.40) via RAFT of vinyl acetate using macromolecular chain transfer agent. The final PAA‐g‐PVAc amphiphilic graft copolymers were obtained by selective acidic hydrolysis of PtBA backbone in acidic environment without affecting the side chains. The critical micelle concentrations in aqueous media were determined by fluorescence probe technique. The micelle morphologies were found to be spheres. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6032–6043, 2009  相似文献   

14.
A well‐defined starlike amphiphilic graft copolymer bearing hydrophilic poly(acrylic acid) backbones and hydrophobic polystyrene side chains was synthesized by successive atom transfer radical polymerization followed by the hydrolysis of poly‐(methoxymethyl acrylate) backbone. A grafting‐from strategy was employed for the synthesis of a graft copolymer with narrow molecular weight distribution. Hydrophobic polystyrene side chains were connected to the backbones through stable C? C bonds. The poly(methoxymethyl acrylate) backbones can be easily hydrolyzed with HCl without affecting the hydrophobic polystyrene side chains. This kind of amphiphilic graft copolymer can form stable sphere micelles in water. The sizes of the micelles were dependent on the ionic strength and pH value. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3687–3697, 2007  相似文献   

15.
Amphiphilic graft copolymers are excellent additives for the development of antifouling membranes by nonsolvent induced phase separation. We report a convenient approach to the synthesis of novel graft copolymers with hydrophobic polyacrylonitrile (PAN) backbones and hydrophilic poly(2-hydroxyethyl methacrylate) (PHEMA) side chains. Atom transfer radical polymerization (ATRP) of 2-hydroxyethyl methacrylate was carried out with poly(acrylonitrile-co-p-chloromethyl styrene) (PAN-co-PCMS) as a macroinitiator in the presence of CuCl/2,2’-bipyridine at 50 °C in dimethyl sulfoxide. Kinetics of the graft polymerization was also evaluated. The synthesis of poly(acrylonitrile-co-p-chloromethyl styrene-g-2-hydroxyethyl methacrylate) (PAN-co-(PCMS-g-PHEMA)) can be relatively controlled when CMS (the ATRP sites) unit in the macroinitiator is around 5 mol%. Both the macroinitiators and graft copolymers were characterized by FTIR, NMR and GPC. The surface morphology and wettability of the copolymer films were studied by AFM and water contact angle measurement, respectively. We demonstrate that phase segregation between the PAN-co-PCMS backbones and the PHEMA side chains takes place and the surface hydrophilicity of the graft copolymers increases with the length of the PHEMA side chains. Because these amphiphilic graft copolymers can be synthesized in mass, they will be useful as latent additives for the fabrication of advanced PAN separation membranes.  相似文献   

16.
A series of graft (co)polymers were synthesized by nucleophilic substitution reaction between iodinated 1,2‐polybutadiene (PB‐I, backbone) and living polymer lithium (side chains). The coupling reaction between PB‐I and living polymers can finish within minutes at room temperature, and high conversion (up to 92%) could be obtained by effectively avoiding side reaction of dimerization when living polymers were capped with 1,1‐diphenylethylene. By virtue of living anionic polymerization, backbone length, side chain length, and side chain composition, as well as graft density, were well controlled. Tunable molecular weight of graft (co)polymers with narrow molecular weight distribution can be obtained by changing either the lengths of side chain and backbone, or the graft density. Graft copolymers could also be synthesized with side chains of multicomponent polymers, such as block polymer (polystyrene‐b‐polybutadiene) and even mixed polymers (polystyrene and polybutadiene) as hetero chains. Thus, based on living anionic polymerization, this work provides a facile way for modular synthesis of graft (co)polymers via nucleophilic substitution reaction between living polymers and polyhalohydrocarbon (PB‐I). © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

17.
Amphiphilic graft copolymers were prepared via the radical copolymerization of poly(ethylene oxide) (PEO) macromonomers with fluorocarbon or hydrocarbon acrylates in toluene with 2,2′‐azobisisobutyronitrile (AIBN) as an initiator. 1H NMR spectroscopy confirmed that the composition of the graft copolymers corresponded well to the monomer feed. For gel electrolytes prepared from the amphiphilic copolymers, the nature of the ionophobic parts of the amphiphilic graft copolymers had a great influence on the ion conductivity. Gel electrolytes based on graft copolymers containing fluorocarbon side chains showed significantly higher ion conductivity than electrolytes based on graft copolymers containing hydrocarbon groups. The ambient‐temperature ion conductivity was about 2.6 mS/cm at 20 °C for a gel electrolyte based on an amphiphilic graft copolymer consisting of an acrylate backbone carrying PEO and fluorocarbon side chains. Corresponding gels based on graft copolymers with PEO side chains and hydrocarbon groups showed an ambient‐temperature ion conductivity of about 1.2 mS/cm. The gel electrolytes contained 30 wt % copolymer and 70 wt % 1 M LiPF6 in an ethylene carbonate/γ‐butyrolactone (2/1 w/w) mixture. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2223–2232, 2001  相似文献   

18.
Acryloyl terminated Poly (ethyleneoxide)macromonomers (PEO-A) with different PEO chain lengths have been prepared by deactivation of PEO alkoxide with acryloyl chloride. A new kind of amphiphilic polystyrene-g-poly (ethylene oxide)graft copolymer containing both microphase separated and PEO side chain structures has been synthesized from radical copolymerization of PEO-A macromonomer with styrene. After careful purification by a newly-developed method called "selective dissolution', the well-defined structure of the purified copolymers was confirmed by IR, ~1H-NMR and GPC. Various experimental parameters controlling the copolymerization were studied in detail. The results indicated that the feed ratio of styrene to macromonomer(S/M) was the most important determining factor for the composition of the copolymers. A detailed "comb- model" was proposed to describe the molecular structure of the graft copolymers. Finally, this amphiphilic graft copolymers may readily form microphase separated structures as clearly indicated by transmission electron microscopy.  相似文献   

19.
A novel synthetic strategy for the synthesis of graft copolymers is reported. Block copolymers containing segments with stable nitroxyl radicals side groups were first prepared by anionic polymerization, which were then used as a precursor for the subsequent nitroxide-mediated radical polymerization (NMRP) of styrene. This way, block–graft copolymers with polystyrene side chains grafted from one of the blocks were successfully synthesized in a controlled manner. In addition, block–graft copolymers with grafted polystyrene chains and a poly(tert-butyl methacrylate) block were subjected to hydrolysis to yield the corresponding amphiphilic polymers. The structures and the molecular weight characteristics of the polymers were characterized by spectral and chromatographic analyses. The surface morphology of thus obtained polymers was also investigated by microscopic techniques. © 2019 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 62–69  相似文献   

20.
A successive method for preparing novel amphiphilic graft copolymers with a hydrophilic backbone and hydrophobic side chains was developed. An anionic copolymerization of two bifunctional monomers, namely, allyl methacrylate (AMA) and a small amount of glycidyl methacrylate (GMA), was carried out in tetrahydrofuran (THF) with 1,1‐diphenylhexyllithium (DPHL) as the initiator in the presence of LiCl ([LiCl]/[DPHL]0 = 2), at −50 °C. The copolymer poly(AMA‐co‐GMA) thus obtained possessed a controlled molecular weight and a narrow molecular weight distribution (Mw /Mn = 1.08–1.17). Without termination and polymer separation, a coupling reaction between the epoxy groups of this copolymer and anionic living polystyrene [poly(St)] at −40 °C generated a graft copolymer with a poly(AMA‐co‐GMA) backbone and poly(St) side chains. This graft copolymer was free of its precursors, and its molecular weight as well as its composition could be well controlled. To the completed coupling reaction solution, a THF solution of 9‐borabicyclo[3.3.1]nonane was added, and this was followed by the addition of sodium hydroxide and hydrogen peroxide. This hydroboration changed the AMA units of the backbone to 3‐hydroxypropyl methacrylate, and an amphiphilic graft copolymer with a hydrophilic poly(3‐hydroxypropyl methacrylate) backbone and hydrophobic poly(St) side chains was obtained. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1195–1202, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号