首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 687 毫秒
1.
星形裂纹的应力分析   总被引:5,自引:0,他引:5  
陈柱  刘官厅  关璐 《力学学报》2009,41(3):425-430
利用复变函数的方法, 通过构造适当的保角映射研究了星形裂纹的平面弹性问题,给出了裂纹尖端I型与II型问题应力强度因子的解析解.并由此模拟出了经典的Griffith裂纹,共点均匀分布三裂纹,十字裂纹,对称八裂纹问题.   相似文献   

2.
一维六方准晶中椭圆孔边裂纹的静态与动态分析   总被引:1,自引:0,他引:1  
通过构造保角映射函数,借助复变函数方法,研究了一维六方准晶中椭圆孔边裂纹的反平面剪切问题,给出了Ⅲ型裂纹问题的应力强度因子的解析解.当椭圆的长、短半轴以及裂纹长度变化时,所得结果不仅可以还原为Griffith裂纹的情形,而且得到孔边裂纹问题、T型裂纹问题和半无限平面边界裂纹问题的应力强度因子的解析解.就声子场而言,这些解与经典弹性的结果完全一致.接着对椭圆孔边裂纹的动力学问题进行了研究,并得到了Ⅲ型动态应力强度因子的解析解.当裂纹速度V→0时,动力学解还原为静力学解.这些解在科学与工程断裂中有着潜在的应用价值.  相似文献   

3.
采用Green函数法研究任意有限长度的孔边裂纹对SH波的散射和裂纹尖端场动应力强度因子的求解.取含有半圆形缺口的弹性半空间水平表面上任意一点承受时间谐和的出平面线源荷载作用时位移函数的基本解作为Green函数,采用裂纹``切割'方法并根据连接条件建立起问题的定解积分方程,得到动应力强度因子的封闭解答.最后给出了孔边裂纹动应力强度因子的算例和结果,并讨论了圆孔的存在对动应力强度因子的影响.  相似文献   

4.
孔边裂纹对SH波的散射及其动应力强度因子   总被引:15,自引:1,他引:14  
刘殿魁  刘宏伟 《力学学报》1999,31(3):292-299
采用Green函数法研究任意有限长度的孔边裂纹对SH波的散射和裂纹尖端场动应力强度因子的求解.取含有半圆形缺口的弹性半空间水平表面上任意一点承受时间谐和的出平面线源荷载作用时位移函数的基本解作为Green函数,采用裂纹“切割”方法并根据连接条件建立起问题的定解积分方程,得到动应力强度因子的封闭解答.最后给出了孔边裂纹动应力强度因子的算例和结果,并讨论了圆孔的存在对动应力强度因子的影响  相似文献   

5.
分析了SH波对一维六方准晶中直裂纹的散射问题。利用积分变换技术,结合Copson方法,通过求解对偶积分方程,得到声子场和相位子场应力、位移及裂纹尖端动应力强度因子的解析表达式。通过数值算例讨论了裂纹长度、入射角和入射波频率对标准动应力强度因子的影响,此研究在工程材料应用中有一定的参考价值。  相似文献   

6.
杨娟  李星 《力学季刊》2007,28(3):471-478
研究功能梯度压电带中裂纹对SH波的散射问题,为了便于分析,材料性质假定为指数模型,并假设裂纹面上的边界条件为电渗透型的.根据压电理论得到压电体的状态方程,利用Fourier积分变换,问题转化为对偶积分方程的求解.用Copson方法求解积分方程.求得了裂纹尖端动应力强度因子、电位移强度因子的解析表达式,最后数值结果显示了标准动应力强度因子与入射波数、材料参数、带宽、波数以及入射角之间的关系.  相似文献   

7.
利用积分变换技术,结合Copson方法,研究了含直线型对称裂纹的一维六方压电准晶对SH波的散射问题。通过求解对偶积分方程,得到声子场、相位子场应力、位移及电场电位移分量的解析解。定义了裂纹尖端应力强度因子及电位移强度因子,给出了电非渗透性条件下应力强度因子及电位移强度因子的解析解。此研究结果对压电准晶材料的工程应用有一定的理论价值。  相似文献   

8.
研究了薄膜涂层材料中币形界面裂纹的弹性波散射问题,建立了含有币形界面裂纹的覆层半空间模型,采用Hankel积分变换,将裂纹对弹性波散射的问题转化为求解矩阵形式的奇异积分方程。结合渐近分析和围道积分技术得到积分方程的解,进一步推导了散射波的应力场和位移场,以及动应力强度因子的理论计算公式。在数值算例中,分析了不同材料组合和裂纹尺寸情况下动应力强度因子与入射波频率的关系,并给出了裂纹张开位移的结果。为薄膜涂层材料的动态破坏分析提供了一定的理论基础。  相似文献   

9.
本文研究含有Ⅲ型孔边裂纹压电弹性体的反平面问题.根据Muskhelishvili的数学弹性力学理论,并利用保角变换和Cauchy积分的方法,对含有圆孔孔边单裂纹和双裂纹的压电弹性体分别进行了分析.基于电不可穿透裂纹模型,得到了在反平面剪力和面内电载荷的共同作用下裂纹尖端应力强度因子的解析解.最后,通过数值算例,讨论了应力强度因子随裂纹长度变化的规律.结果表明:应力强度因子随着裂纹和孔的相对尺寸的增加而增加,并且单边裂纹的应力强度因子要比双边裂纹的应力强度因子大.  相似文献   

10.
压电体中裂纹与孤立电偶极子的相互作用   总被引:5,自引:0,他引:5  
研究压电体裂纹与电偶极子的相互作用,得到问题的闭合解,包括应力-电位移场,裂纹张开位移和电势差,以及裂尖应力强度因子,结果表明,电偶极子的方向对裂纹场的影响可由压电体各向异性方向函数表示;当电偶极子位于裂尖附近时,在原点取在裂尖的局部极坐标系中电偶极子位置的极角对裂尖场的影响可由各向异性方向函数表示,电偶极子引起的裂尖应力强度因子与其距裂尖的距离的-3/2次幂成正比。  相似文献   

11.
利用复变函数方法, 通过构造保角映射, 分析了一维六方压电准晶中对称条形体中共线双半无限快速传播裂纹的反平面问题, 给出了在电非渗透型与电渗透型两种情况下动态应力强度因子的解析解. 当速度趋于0时可退化为已有的对应的静力问题的解. 得到的解析解对准晶材料的工程应用中有一定的理论价值.  相似文献   

12.
基于弹性力学中平面问题的复势方法,应用保角映射技术,以Faber级数为工具,导出含任意多椭圆孔及裂纹群无限大板在任意载荷作用下其应力场和位移场的级数解,并在此基础上计算了任意多裂纹板的应力强度因子和M积分,数值结果表明,该方法具有计算精度高、收敛速度快、方便快捷等解析法特有的优点。通过算例分析了不同裂纹倾角时M积分值随载荷方向的变化关系,并讨论了裂纹长度、裂纹间距及裂纹倾角等参数对应力强度因子的影响规律,获得了一些重要结论.  相似文献   

13.
The dynamic stress intensity factors in a half-plane weakened by several finite moving cracks are investigated by employing the Fourier complex transformation. Stress analysis is performed in a half-plane containing a single dislocation and without dislocation. An exact solution in a closed form to the stress fields and displacement is ob- tained. The Galilean transformation is used to transform between coordinates connected to the cracks. The stress components are of the Cauchy singular kind at the location of dislocation and the point of application of the the influence of crack length and crack running force. Numerical examples demonstrate velocity on the stress intensity factor.  相似文献   

14.
The dynamic stress and electric displacement intensity factors of impermeable cracks in homogeneous piezoelectric materials and interface cracks in piezoelectric bimaterials are evaluated by extending the scaled boundary finite element method (SBFEM). In this method, a piezoelectric plate is divided into polygons. Each polygon is treated as a scaled boundary finite element subdomain. Only the boundaries of the subdomains need to be discretized with line elements. The dynamic properties of a subdomain are represented by the high order stiffness and mass matrices obtained from a continued fraction solution, which is able to represent the high frequency response with only 3–4 terms per wavelength. The semi-analytical solutions model singular stress and electric displacement fields in the vicinity of crack tips accurately and efficiently. The dynamic stress and electric displacement intensity factors are evaluated directly from the scaled boundary finite element solutions. No asymptotic solution, local mesh refinement or other special treatments around a crack tip are required. Numerical examples are presented to verify the proposed technique with the analytical solutions and the results from the literature. The present results highlight the accuracy, simplicity and efficiency of the proposed technique.  相似文献   

15.
In the present paper dynamic stress intensity factor and strain energy density factor of multiple cracks in the functionally graded orthotropic half-plane under time-harmonic loading are investigated. By utilizing the Fourier transformation technique the stress fields are obtained for a functionally graded orthotropic half-plane containing a Volterra screw dislocation. The variations of the material properties are assumed to be exponential forms which the equilibrium has an analytical solution. The dislocation solution is utilized to formulate integral equation for the half-plane weakened by multiple smooth cracks under anti-plane deformation. The integral equations are of Cauchy singular type at the location of dislocation which are solved numerically to obtain the dislocation density on the faces of the cracks. The dislocation densities are employed to determined stress intensity factor and strain energy density factors (SEDFs) for multiple smooth cracks under anti-plane deformation. Numerical examples are provided to show the effects of material properties and the crack configuration on the dynamic stress intensity factors and SEDFs of the functionally graded orthotropic half-plane with multiple curved cracks.  相似文献   

16.
带双裂纹的椭圆孔口问题的应力分析   总被引:5,自引:1,他引:5  
郭俊宏  刘官厅 《力学学报》2007,39(5):699-703
利用复变方法,通过构造新的保角映射,研究了带双裂纹椭圆孔口的平面弹性问 题,得到了I型与II型裂纹问题应力强度因子的解析解.在极限情形下, 不仅可以还原经典的Griffith裂纹的结果,而且可模拟出十字裂纹和带双裂纹的圆 形孔口问题.  相似文献   

17.
三维间断位移法及强奇异和超奇异积分的处理方法   总被引:10,自引:1,他引:10  
从积分方程Somigliana等式出发,导出三维状态下单位位错集度的基本解.在此基础上,建立了边界积分方程,并给出了其离散形式.对强奇异和超奇异积分,采用了Hadamard定义的有限部分积分来处理.最后,给出了计算裂纹应力强度因子的算例,并与解析解进行了比较,证实了该方法的有效性.  相似文献   

18.
The Self-Similar Crack Expansion (SSCE) method is used to calculate stress intensity factors for three-dimensional cracks in an infinite medium or semi-infinite medium by the boundary integral element technique, whereby, the stress intensity factors at crack tips are determined by calculating the crack-opening displacements over the crack surface. For elements on the crack surface, regular integrals and singular integrals are precisely evaluated based on closed form expressions, which improves the accuracy. Examples show that this method yields very accurate results for stress intensity factors of penny-shaped cracks and elliptical cracks in the full space, with errors of less than 1% as compared with analytical solutions. The stress intensity factors of subsurface cracks are in good agreement with other analytical solutions.  相似文献   

19.
We present a new method for determining the elasto-dynamic stress fields associated with the propagation of anti-plane kinked or branched cracks. Our approach allows the exact calculation of the corresponding dynamic stress intensity factors. The latter are very important quantities in dynamic brittle fracture mechanics, since they determine the crack path and eventual branching instabilities. As a first illustration, we consider a semi-infinite anti-plane straight crack, initially propagating at a given time-dependent velocity, that changes instantaneously both its direction and its speed of propagation. We will give the explicit dependence of the stress intensity factor just after kinking as a function of the stress intensity factor just before kinking, the kinking angle and the instantaneous velocity of the crack tip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号