首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The transient response of finite bimaterial plates with interface cracks is analyzed directly in the time domain by using the scaled boundary finite-element method. A bimaterial plate is divided into a few subdomains. Only the boundaries of the subdomains are discretized with line elements leading to great flexibility in mesh generation. The displacement and stress fields are expressed as a series solution which separates the singular stress term from other high-order terms. The oscillatory stress singularity in the radial direction emanating from the scaling center is represented analytically. The complex dynamic stress intensity factors are evaluated directly from either the stresses or the crack opening displacements of the singular stress term. Numerical examples of cracked anisotropic bimaterial plates are presented to verify the accuracy of the present technique and to provide additions to the very limited number of reference solutions in the literature.  相似文献   

2.
The behavior of two parallel non-symmetric cracks in piezoelectric materials subjected to the anti-plane shear loading was studied by the Schmidt method for the permeable crack electric boundary conditions. Through the Fourier transform, the present problem can be solved with two pairs of dual integral equations ip which the unknown variables are the jumps of displacements across crack surfaces. To solve the dual integral equations, the jumps of displacements across crack surfaces were directly expanded in a series of Jacobi polynomials. Finally, the relations between electric displacement intensity factors and stress intensity factors at crack tips can be obtained. Numerical examples are provided to show the effect of the distance between two cracks upon stress and electric displacement intensity factors at crack tips. Contrary to the impermeable crack surface condition solution, it is found that electric displacement intensity factors for the permeable crack surface conditions are much smaller than those for the impermeable crack surface conditions. At the same time, it can be found that the crack shielding effect is also present in the piezoelectric materials.  相似文献   

3.
IntroductionIn the fracture mechanics studies for piezoelectric materials,differently electricboundary conditions at the crack surfaces have been proposed by many researchers.Forexample,for the sake of analytical simplification,the assumption that the cra…  相似文献   

4.
Three-dimensional edge cracks are analyzed using the Self-Similar Crack Expansion (SSCE) method with a boundary integral equation technique. The boundary integral equations for surface cracks in a half space are presented based on a half space Green's function (Mindlin, 1936). By using the SSCE method, the stress intensity factors are determined by the crack-opening displacement over the crack surface. In discrete boundary integral equations, the regular and singular integrals on the crack surface elements are evaluated by an analytical method, and the closed form expressions of the integrals are given for subsurface cracks and edge crakcs. This globally numerical and locally analytical method improves the solution accuracy and computational effort. Numerical results for edge cracks under tensile loading with various geometries, such as rectangular cracks, elliptical cracks, and semi-circular cracks, are presented using the SSCE method. Results for stress intensity factors of those surface breaking cracks are in good agreement with other numerical and analytical solutions.  相似文献   

5.
江守燕  李云  杜成斌 《力学学报》2019,51(1):278-288
结合了扩展有限元法(extended finite elementmethods,XFEM)和比例边界有限元法(scaled boundary finite elementmethods,SBFEM)的主要优点,提出了一种改进型扩展比例边界有限元法(improvedextended scaled boundary finite elementmethods,$i$XSBFEM),为断裂问题模拟提供了一条新的途径.类似XFEM,采用两个正交的水平集函数表征材料内部裂纹面,并基于水平集函数判断单元切割类型;将被裂纹切割的单元作为SBFE的子域处理,采用SBFEM求解单元刚度矩阵,从而避免了XFEM中求解不连续单元刚度矩阵需要进一步进行单元子划分的缺陷;同时,借助XFEM的主要思想,将裂纹与单元边界交点的真实位移作为单元结点的附加自由度考虑,赋予了单元结点附加自由度明确的物理意义,可以直接根据位移求解结果得出裂纹与单元边界交点的位移;对于含有裂尖的单元,选取围绕裂尖单元一圈的若干层单元作为超级单元,并将此超级单元作为SBFE的一个子域求解刚度矩阵,超级单元内部的结点位移可通过SBFE的位移模式求解得到,应力强度因子可基于裂尖处的奇异位移(应力)直接获得,无需借助其他的数值方法.最后,通过若干数值算例验证了建议的$i$XSBFEM的有效性,相比于常规XFEM,$i$XSBFEM的基于位移范数的相对误差收敛性较好;采用$i$XSBFEM通过应力法和位移法直接计算得到的裂尖应力强度因子均与解析解吻合\较好.   相似文献   

6.
The problem of two unequal collinear straight cracks weakening a poled transversely isotropic piezoelectric ceramic is addressed under semi-permeable electric boundary conditions on the crack faces. The plate has been subjected to combined in-plane normal(to the faces of the cracks) mechanical and electric loads. Problem is formulated employing Stroh formalism and solved using complex variable technique. The elastic field, electric field and energy release rate are obtained in closed analytic form. A case study is presented for poled PZT-5H cracked plate to study the effect of prescribed mechanical load, electric load, inter-crack distance and crack lengths on crack arrest parameters stress intensity factor (SIF), electric displacement intensity factor (EDIF) and mechanical and total energy release rates (ERR). Moreover a comparative study is done of impermeable and semi-permeable crack face boundary conditions on SIF, EDIF and ERR, and results obtained is presented graphically. It is observed that the effect of dielectric medium in the crack gap cannot be ignored.  相似文献   

7.
This work is concerned with the dynamic response of two coplanar cracks in a piezoelectric ceramic under antiplane mechanical and inplane electric time-dependent load. The cracks are assumed to act either as an insulator or as a conductor. Laplace and Fourier transforms are used to reduce the mixed boundary value problems to Cauchy-type singular integral equations in Laplace transform domain. A numerical Laplace inversion algorithm is used to determine the dynamic stress and electric displacement factors that depend on time and geometry. A normalized equivalent parameter describing the ratio of the equivalent magnitude of electric load to that of mechanical load is introduced in the numerical computation of the dynamic stress intensity factor (DSIF) which has a similar trend as that for the pure elastic material. The results show that the dynamic electric field will impede or enhance crack propagation in a piezoelectric ceramic material at different stages of the dynamic electromechanical load. Moreover, the electromechanical response is greatly affected by the ratio of the crack length to the ligament between the cracks. The stress and electric displacement intensity factor can be combined by the energy density factor or function to address the fracture of piezoelectric materials under the combined influence of electromechanical loading.  相似文献   

8.
This paper investigates the dynamic behaviour of a piezoelectric laminate containing multiple interfacial collinear cracks subjected to steady-state electro-mechanical loads. Both the permeable and impermeable boundary conditions are examined and discussed. Based on the use of integral transform techniques, the problem is reduced to a set of singular integral equations, which can be solved using Chebyshev polynomial expansions. Numerical results are provided to show the effect of the geometry of interacting collinear cracks, the applied electric fields, the electric boundary conditions along the crack faces and the loading frequency on the resulting dynamic stress intensity and electric displacement intensity factors.  相似文献   

9.
In this paper, the dynamic behavior of two parallel symmetric cracks in piezoelectric materials under harmonic anti-plane shear waves is investigated by use of the non-local theory for permeable crack surface conditions. To overcome the mathematical difficulties, a one-dimensional non-local kernel is used instead of a two-dimensional one for the problem to obtain the stress occurs near the crack tips. By means of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations that the unknown variables are the jumps of the displacement along the crack surfaces. These equations are solved using the Schmidt method. Numerical examples are provided. Contrary to the previous results, it is found that no stress and electric displacement singularity is present near the crack tip. The non-local elastic solutions yield a finite hoop stress near the crack tip, thus allowing for a fracture criterion based on the maximum stress hypothesis. The finite hoop stress at the crack tip depends on the crack length, the frequency of the incident wave, the distance between two cracks and the lattice parameter of the materials, respectively. Contrary to the impermeable crack surface condition solution, it is found that the dynamic electric displacement for the permeable crack surface conditions is much smaller than the results for the impermeable crack surface conditions. The results show that the dynamic field will impede or enhance crack propagation in the piezoelectric materials at different stages of the dynamic load.  相似文献   

10.
IntroductionDuetotheintrinsicelectro_mechanicalcouplingbehavior,piezoelectricmaterialsareveryusefulinelectronicdevices.However,mostpiezoelectricmaterialsarebrittlesuchasceramicsandcrystals.Therefore ,piezoelectricmaterialshaveatendencytodevelopcriticalcracksduringthemanufacturingandthepolingprocesses.So ,itisimportanttostudytheelectro_elasticinteractionandfracturebehaviorsofpiezoelectricmaterials.Theincreasingattentiontothestudyofcrackproblemsinpiezoelectricmaterialshasledtoalotofsignificantw…  相似文献   

11.
The coupled elastic and electric fields for anisotropic piezoelectric materials with electrically permeable cracks are analyzed by using Stroh formula in anisotropic elasticity. It is shown from the solution that the tangent component of the electric field strength and the normal component of the electric displacement along the faces of cracks are all constants, and the electric field intensity and electric displacement have the singularity of type (1/2) at the crack tip. The energy release rate for crack propagation depends on both the stress intensity factor and material constants. The electric field intensity and electric displacement inside electrically permeable cracks are all constants.  相似文献   

12.
Generalized 2D problem of piezoelectric media containing collinear cracks   总被引:3,自引:0,他引:3  
The generalized 2D problem in piezoelectric media with collinear cracks is addressed based on Stroh's formulation and the exact electric boundary conditions on the crack faces. Exact solutions are obtained, respectively, for two special cases: one is that a piezoelectric solid withN collinear cracks is subjected to uniform loads at infinity, and the other is that a piezoelectric solid containing a single crack is subjected to a line load at an arbitrary point. It is shown when uniform loads are applied at infinity or on the crack faces that, the stress intensity factors are the same as those of isotropic materials, while the intensity factor of electric displacement is dependent on the material constants and the applied mechanical loads, but not on the applied electric loads. Moreover, it is found that the electric field inside any crack is not equal to zero, which is related to the material properties and applied mechanical-electric loads. The project supported by the National Natural Science Foundation of China (19772004)  相似文献   

13.
The Schmidt method is adopted to investigate the fracture problem of multiple parallel symmetric and permeable finite length mode-III cracks in a functionally graded piezoelectric/piezomagnetic material plane. This problem is formulated into dual integral equations, in which the unknown variables are the displacement jumps across the crack surfaces. In order to obtain the dual integral equations, the displacement jumps across the crack surfaces are directly expanded as a series of Jacobi polynomials. The results show that the stress, the electric displacement, and the magnetic flux intensity factors of cracks depend on the crack length, the functionally graded parameter, and the distance among the multiple parallel cracks. The crack shielding effect is also obviously presented in a functionally graded piezoelectric/piezomagnetic material plane with mul- tiple parallel symmetric mode-III cracks.  相似文献   

14.
In this paper, the local stress intensity factor solutions for kinked cracks near spot welds in lap-shear specimens are investigated by finite element analyses. Based on the experimental observations of kinked crack growth mechanisms in lap-shear specimens under cyclic loading conditions, three-dimensional and two-dimensional plane-strain finite element models are established to investigate the local stress intensity factor solutions for kinked cracks emanating from the main crack. Semi-elliptical cracks with various kink depths are assumed in the three-dimensional finite element analysis. The local stress intensity factor solutions at the critical locations or at the maximum depths of the kinked cracks are obtained. The computational local stress intensity factor solutions at the critical locations of the kinked cracks of finite depths are expressed in terms of those for vanishing kink depth based on the global stress intensity factor solutions and the analytical kinked crack solutions for vanishing kink depth. The three-dimensional finite element computational results show that the critical local mode I stress intensity factor solution increases and then decreases as the kink depth increases. When the kink depth approaches to 0, the critical local mode I stress intensity factor solution appears to approach to that for vanishing kink depth based on the global stress intensity factor solutions and the analytical kinked crack solutions for vanishing kink depth. The two-dimensional plane-strain computational results indicate that the critical local mode I stress intensity factor solution increases monotonically and increases substantially more than that based on the three-dimensional computational results as the kink depth increases. The local stress intensity factor solutions of the kinked cracks of finite depths are also presented in terms of those for vanishing kink depth based on the global stress intensity factor solutions and the analytical kinked crack solutions for vanishing kink depth. Finally, the implications of the local stress intensity factor solutions for kinked cracks on fatigue life prediction are discussed.  相似文献   

15.
A non-local theory of elasticity is applied to obtain the dynamic interaction between two collinear cracks in the piezoelectric materials plane under anti-plane shear waves for the permeable crack surface boundary conditions. Unlike the classical elasticity solution, a lattice parameter enters into the problem that make the stresses and the electric displacements finite at the crack tip. A one-dimensional non-local kernel is used instead of a two-dimensional one for the anti-plane dynamic problem to obtain the stress and electric displacement near the crack tips. By means of the Fourier transform, the problem can be solved with the help of two pairs of triple integral equations in which the unknown variable is the jump of the displacement across the crack surface. The solutions are obtained by means of the Schmidt method. Crack bifurcation is predicted using the strain energy density criterion. Minimum values of the strain energy density functions are assumed to coincide with the possible locations of fracture initiation. Bifurcation angles of ±5° and ±175° are found. The result of possible crack bifurcation was not expected before hand.  相似文献   

16.
应用一种边界元方法来研究内部压力作用下矩形板中源于椭圆孔的分支裂纹。该边界元方法由Crouch与Starfied建立的常位移不连续单元和笔者最近提出的裂尖位移不连续单元构成。在该边界元方法的实施过程中,左、右裂尖位移不连续单元分别置于裂纹的左、右裂尖处,而常位移不连续单元则分布于除了裂尖位移不连续单元占据的位置之外的整个裂纹面及其它边界。本数值结果进一步证实这种数值方法对计算有限大板中复杂裂纹的应力强度因子的有效性,同时该数值结果可以揭示裂纹体几何对应力强度因子的影响。  相似文献   

17.
In this paper, the basic solutions of two parallel mode-I cracks or four parallel mode-I cracks in the piezoelectric materials were investigated by means of the Schmidt method for the limited-permeable electric boundary conditions. The electric permittivity of air in the crack was considered. Through the Fourier transform, the problems can be solved with the help of two pairs of dual integral equations, in which the unknown variables were the jumps of the displacements across the crack surfaces, not the dislocation density functions. To solve the dual integral equations, the jumps of the displacements across the crack surfaces were directly expanded in a series of Jacobi polynomials. Finally, the effects of the distance between two parallel cracks, the distance between two collinear cracks and the electric boundary conditions on the stress and the electric intensity factors in the piezoelectric materials are analyzed. These results can be used for the strength evaluation of the piezoelectric materials with multi-cracks. The crack shielding effect is also present in the piezoelectric materials.  相似文献   

18.
The assumptions of impermeable and permeable cracks give rise to significant errors in determining electro-elastic behavior of a cracked piezoelectric material. The former simply imposes that the permittivity or electric displacement of the crack interior vanishes, and the latter neglects also the effects of the dielectric of an opening crack interior. Considering the presence of the dielectric of an opening crack interior and the permeability of the crack surfaces for electric field, this paper analyzes electro-elastic behavior induced by a penny-shaped dielectric crack in a piezoelectric ceramic layer. In the cases of prescribed displacement or prescribed stress at the layer surfaces, the Hankel transform technique is employed to reduce the problem to Fredholm integral equations with a parameter dependent nonlinearly on the unknown functions. For an infinite piezoelectric space, a closed-form solution can be derived explicitly, while for a piezoelectric layer, an iterative technique is suggested to solve the resulting nonlinear equations. Field intensity factors are obtained in terms of the solution of the equations. Numerical results of the crack opening displacement intensity factors are presented for a cracked PZT-5H layer and the effect of applied electric field on crack growth are examined for both cases. The results indicate that the fracture toughness of a piezoelectric ceramic is affected by the direction of applied electric fields, dependent on the elastic boundary conditions.  相似文献   

19.
宋天舒  李冬 《力学学报》2010,42(6):1219
采用Green函数法研究界面上含圆孔边界径向有限长度裂纹的两半无限压电材料对SH波的散射和裂纹尖端动应力强度因子问题.首先构造出具有半圆型凹陷半空间的位移Green函数和电场Green函数,然后采用裂纹"切割"方法构造孔边裂纹,并根据契合思想和界面上的连接条件建立起求解问题的定解积分方程.最后作为算例,给出了孔边界面裂纹尖端动应力强度因子的计算结果图并进行了讨论.  相似文献   

20.
IntroductionItiswell_knownthatpiezoelectricmaterialsproduceanelectricfieldwhendeformedandundergodeformationwhensubjectedtoanelectricfield .Thecouplingnatureofpiezoelectricmaterialshasattractedwideapplicationsinelectric_mechanicalandelectricdevices,suc…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号