首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transesterification of poly(ethylene terephthalate) (PET) with poly(ε-caprolactone) (PCL) was investigated bymeans of NMR spectroscopy, extraction experiments, differential scanning calorimetry (DSC) and phase contrast microscopy(PCM). The ~1H-NMR results show that transesterification takes place in the melt blends and leads to the formation of thePET-PCL copolyester with a chemical structure similar to ethylene terephthalate-ε-caprolactonc copolycster (TCL)synthesized directly from monomers. However, even in the blend that has been transesterified for 8 h, the random PET-PCLcopolyester, PET-PCL copolyester with long PET or long PCL segments and the unreacted PET and PCL homopolymersmay coexist. Due to the low mobility of PET and PCL chains and the high viscosity of the two macromolecules, thetransesterification proceeds with difficulty. Furthermore, PET is incompatible with PCL, the transesterification can onlyoccur at the interface or in the interfacial region between two phases, and finally the reaction can only reach a localequilibrium. These results indicate that in fact the transesterification in the melt blend between two incompatiblehomopolymers could not lead to the formation of completely random or typical block copolyesters.  相似文献   

2.
Liquid–liquid phase separation and subsequent homogenization during annealing in an extruded poly(ethylene terephthalate) (PET)/poly(ethylene‐2,6‐naphthalate) (PEN) blend were investigated with time‐resolved light scattering and optical microscopy. In the initial stage, the domain structure was developed by demixing via spinodal decomposition. In the later stage, the blend was homogenized by transesterification between the two polyesters. The crystallization rate depended on the sequence distribution of polymer chains, which was determined by the level of transesterification rather than the composition change of separated phases. When the crystallization of PEN preceded that of PET, PEN showed a higher melting point. However, when the crystallization rate of PEN was slower than that of PET, the previously formed PET crystals suppressed the crystallization of PEN, causing the coarse crystalline structure of PEN to have a lower melting point. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2625–2633, 2000  相似文献   

3.
PET/PEN共混物的相容性与酯交换反应   总被引:3,自引:0,他引:3  
通过用1H-NMR对聚对苯二甲酸乙二酯(PET)与聚2,6-萘甲酸乙二酯(PEN)、PET/PEN共聚物的共混物酯交换反应的研究,测得了反应速率常数、反应活化能和诱导期.根据酯交换反应程度和不同反应温度下的诱导期探讨了酯交换反应与相容性的关系,认为PET与PEN的相容导致或增强了酯交换反应,即相容性是酯交换的必要条件;同时酯交换的发生又促进了PET与PEN的相容.酯交换和相容是聚酯共混物熔融时相互关联的两个过程.  相似文献   

4.
以生物基单体2,5-呋喃二甲酸、乙二醇为原料合成聚2,5-呋喃二甲酸乙二醇酯(PEF)。采用熔融酯交换法以PEF聚酯部分取代聚对苯二甲酸乙二醇酯(PET),制备了系列PET-b-PEF嵌段共聚酯。通过核磁共振仪(NMR)、差示扫描量热仪(DSC)、热失重仪(TGA)、X射线衍射仪(XRD)等技术手段表征了共聚酯的结构和性能。结果表明,该系列共聚酯的玻璃化转变温度(Tg)在75.8~80.3℃之间,且随着PEF链段质量分数的增加,PET-b-PEF嵌段共聚酯的Tg先降低后升高,结晶度和熔融温度逐渐降低。当PEF链段含量高于15%时,共聚酯没有结晶峰。该系列共聚酯具有良好的热稳定性,起始分解温度在392.2~407.9℃之间,与所制备的PET起始分解温度403.3℃接近。且当共聚酯中PEF链段含量低于15%时,起始分解温度均在407℃左右,优于PET的热稳定性。  相似文献   

5.
PS/PPSQ blends with different compositions were prepared by two methods: (1) casting film of PS/PPSQ from the solution of two polymers, and (2) PS/PPSQ blends by in situ polymerization. After studying by solid-state NMR, PS and PPSQ in the casting films are miscible on the scale of several thousand nanometers. Miscibility of PS/PPSQ blends obtained by the second approach was investigated by DMA, SEM, x-ray energy spectrometer, x-ray diffraction, and fluorescence techniques. Only one glass transition temperature could be observed in their DMA curves. There are two phases observable in their SEM micrographs. X-ray diffraction patterns and fluorescence excited spectra of this blend indicate that there is some interaction between molecules of PS and PPSQ in both the continuous phase and dispersed phase. PS and PPSQ in the in situ blends are partially miscible when the percentage of PPSQ is not more than 10%. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
甲基丙烯酸甲酯 甲基丙烯酸共聚物(P(MMA MAA))与低分子量或高分子量梯形聚苯基硅倍半氧烷(PPSQ)的共混物经原位聚合法制成.用光学透明法、荧光光谱、DSC等技术研究了该共混体系的相容性及组分间的相互作用及结构转变.结果表明,当PPSQ含量较小时,由于PPSQ与P(MMA MAA)间存在着较强的氢键作用,该共混体系在一定配比下相容,且低分子量PPSQ与P(MMA MAA)间的相容性较好.当PPSQ的含量≤1%时,PPSQ的加入对该共混物的Tg影响不大,但其Tf随PPSQ含量增加而增大.此外,还测试了P(MMA MAA)/PPSQ原位共混物的硬度及冲击强度.  相似文献   

7.
The isothermal crystallization kinetics of poly(ethylene terephthalate) (PET) in blends with a fully aromatic liquid crystalline copolyester (Vectra A) were studied with differential scanning calorimetry. PET crystallization rates decreases with increasing Vectra fractions in the blends, and the percentage of PET that is crystalline also decreases with increasing Vectra. The equilibrium PET melting temperature for blends containing 40% or more Vectra is unambiguously below that of pure PET. Attenuated total reflectance Fourier-transform infrared spectroscopy measurements indicate that PET/Vectra transesterification does not take place. The results are consistent with a scenario based on prior NMR data in which there is some interphase mixing between the liquid crystalline and flexible polymers and an increase in the fraction of gauche conformers in the PET.  相似文献   

8.
The kinetics of the transesterification reaction between poly(ethylene terephthalate) (PET) and poly(ethylene 2,6‐naphthalate) (PEN) with and without the addition of a chain extender were studied with 1H NMR. Different kinetic approaches were considered, and a second‐order, reversible reaction was accepted for the PET/PEN reactive blend system. The addition of 2,2′‐bis(1,3‐oxazoline) (BOZ) promoted the transesterification reaction between PET and PEN in the molten state. The activation energy of the transesterification reaction for the PET/PEN reactive blend with BOZ (94.0 kJ/mol) was lower than that without BOZ (168.9KJ/mol). The rate constant k took an almost constant value for blend samples with different compositions mixed at 275 °C. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2607–2614, 2001  相似文献   

9.
The sequence structure and thermal behavior of reactive blends of poly(ethylene terephthalate) (PET) with the liquid crystalline copolyester 60 PHB/PET containing 60 mol % of p-hydroxybenzoic acid (PHB) with addition of bis(2-oxazoline) (BOZ) were studied in detail. 1H NMR results indicate that both the number average sequence length of PET and PHB segments (L PET and L PHB) decrease with increasing mixing time and temperature via transesterification between PET and LCP. The transesterification is promoted in the presence of BOZ. As a consequence, the sequence structure and in turn the crystallization both from the glassy and the melt state and the melting behavior are markedly affected.  相似文献   

10.
通过熔融共混的方式,将实验室自行设计合成的三元共聚热致液晶聚酯酰亚胺(PPDI)与聚对苯二甲酸乙二酯(PET)进行共混,制备一系列不同液晶聚合物含量的共混体系.采用示差扫描量热仪(DSC)、广角X-射线衍射仪(WAXD)和动态力学性能分析仪(DMA)对共混体系的结构与性能进行表征.结果表明,共混体系中两组份之间具有良好...  相似文献   

11.
The kinetics of liquid crystalline copolyester synthesis via melt transesterification between poly(ethylene terephthalate)[PET], terephthalic acid [TA] and hydroquinone diacetate [HQDA] is examined. A number of assumptions are proposed and validated to simplify the kinetics and to make the analysis tractable. A key postulation is that the reaction originates between terephthalic acid [TA] and hydroquinone diacetate [HQDA] to form a dimer which slices PET chain. The subsequent coupling of PET segments reforms PET chain with random incorporation of TA-HQDA units. Steady state approximation is invoked for the rate of generation of dimer. The kinetic analysis reveals the implicit simplicity of complex systems.  相似文献   

12.
In this article, the transesterification of poly(bisphenol A carbonate) (PC) with butylene terephthalate-caprolactone copolyester at a weight ratio 50/50 (BCL(21)) was thoroughly investigated by proton nuclear magnetic resonance spectroscopy (^1H-NMR), in conjunction with a model compound. The ^1H-NMR results of the annealed blend PC/BCL(21) show that the formation of bisphenol A-terephthalate ester units is the same as in the annealed blend of PC with PBT, and the transesterification actually occurs between PC and butylene terephthalate (BT) segments in BCL(21). By comparison with the model compound bisphenol A dibutyrate, the new signal appearing at δ=2.56 in the ^1H-NMR spectrum confirms the existence of bisphenol A caprolactone ester units resulting from the exchange reaction of PC with caprolactone (CL) segments. ^1H-NMR analysis of the transesterification rates reveals that the reaction of PC with aromatic and aliphatic segments in BCL(21) proceeds in a random manner. The miscibility of the blend PC/BCL(21) copolyester is favorable for the transesterification of PC with BT segments and CL segments.  相似文献   

13.
聚甲基乙烯基醚的局部构象   总被引:3,自引:1,他引:2  
采用低能构象方法和构象扫描方法,在Dreiding力场下,对含有3种不同侧基取向的PVME的全同二单元体和间同二单元体进行全松弛优化.通过统计平均得到PVME各种构象状态的几何参数和构象能.由统计平均的结果确立了包含侧基所有可能取向信息的PVME链的RIS模型,并利用MontCarlo方法计算了PVME链的特征比,结合实验数据讨论了侧基取向行为的影响.  相似文献   

14.
液晶嵌段共聚物PET/60PHB-b-PC的合成及结构与性能   总被引:1,自引:0,他引:1  
采用PET齐聚物的原位乙酰化法通过加入少量乙二醇(EG)合成了端羟基液晶聚合物PET/60PHB,并将其作为大单体,与双酚A及碳酸二苯酯通过熔融酯交换法,进一步制得了液晶嵌段共聚物PET/60PHB b PC.研究了合成规律,并借助粘度测定、DSC、偏光显微镜、X 光衍射和红外光谱分析等手段对合成的液晶嵌段共聚物进行了表征.研究表明,当PET齐聚物的ηinh=005~007dL/g,Ac2O/PHB(mol/mol)=13,EG/PET(mol/mol)=006时能获得颜色、液晶性、溶解性均很好的端羟基液晶聚合物PET/60PHB,以此液晶聚合物为原料,采用合适的配方与工艺,能获得粘度较高、液晶性较好,并且熔体流动性很好的液晶嵌段共聚物PET/60PHB b PC.通过偏光显微镜与X 光衍射观察,证明此嵌段共聚物呈现向列型液晶织构,但其液晶态织构与纯PET/60PHB、PET/60PHB和PC的混合物明显不同.此外,还初步建立了用红外的分析手段鉴定液晶聚合物PET/60PHB端基的方法.  相似文献   

15.
Blends of poly(trimethylene terephthalate)/bisphenol A polycarbonate (PTT/PC) with different compositions were prepared by melt blending. The effect of transesterification on the miscibility and phase behavior of the blends was studied using DSC, DMA, and 1H NMR. The DMA results revealed a two-phase system with partial miscibility. DSC thermograms of the first heating scan showed a crystallizable system in which addition of PC-phase reduces the degree of crystallinity. However, the cooling and also the second heating scans revealed the complete miscibility of all the blends. It was concluded that annealing at 300 °C (to remove thermal history of the blends) caused the constituents to undergo the transesterification reaction, which changes the blend to a miscible system. The miscibility is due to formation of block copolymers with different block lengths which also suppress the crystallization of the system. The degree of randomness and sequence lengths of the copolymers were determined to analyze the extent of transesterification reaction and structure of the system. It was observed that as the reaction progresses, the degree of randomness increases and the sequence length of the copolymers decreases. Moreover, both increase of reaction time and temperature increased the extent of reaction. The results of DSC and 1H NMR showed that a small amount of reaction is needed to change this system to a miscible blend.  相似文献   

16.
PET/PEN共混体系结构与性能研究进展   总被引:4,自引:0,他引:4  
综述了国内外PET/PEN共混体系的研究进展,重点论述了PET/PEN共混体系的结晶性能相容性酯交换影响因素、结晶动力学,并对其应用前景做了展望.  相似文献   

17.
A method including cryogenic grinding, melt pressing from the molten state, and quenching was used to prepare blends of poly(ethylene terephthalate) (PET) and poly(ethylene naphthalene 2,6‐dicarboxylate) (PEN) in which the two phases were highly dispersed. The effect of melt‐pressing times on the thermal properties and relaxation behavior of PET/PEN films were characterized with differential scanning calorimetry and dielectric spectroscopy. For short melt‐pressing times, two glass‐transition, two crystallization, and two melting peaks were observed, indicating the presence of PET‐rich and PEN‐rich phases in these blends. Longer melt‐pressing times revealed a single glass transition and a single α‐relaxation process, showing that PET–PEN block copolymers were likely to be formed during the melt pressing. The experimental findings were examined in terms of the transesterification reactions between the blend components, as revealed by 1H NMR measurements. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2570–2578, 2002  相似文献   

18.
A series of all‐conjugated diblock and triblock copolymers comprised of poly(naphthalene diimide) (PNDI)‐based n‐type and the poly(3‐hexylthiophene) (P3HT) segments could be synthesized via the Kumada catalyst‐transfer polycondensation process. The crystalline structures and chain orientation of the block copolymer thin films were systematically studied by grazing incident wide‐angle X‐ray scattering (GIWAXS). The GIWAXS results indicated that both the P3HT and PNDI segments in the block copolymers form exclusive crystalline domains in which the P3HT domain aligns with an edge‐on rich orientation, and the PNDI domain aligns with a face‐on rich orientation. In contrast, the blend films of the P3HT and PNDI homopolymers also show two distinguished crystalline domains in which the P3HT domain aligns with an edge‐on rich orientation, and the PNDI domains align in different ways depending on the chemical structure of n‐type polymers, that is, PNDI1Th is isotropically dispersed, while PNDI2Th aligns with a face‐on rich orientation. In addition, the effect of thermal annealing on the crystalline behavior of the block copolymers is reported. The GIWAXS results indicated that thermal annealing increases the crystallinity of both segments without affecting their chain orientation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1139–1148  相似文献   

19.
The transesterification kinetics of poly(ethylene terephthalate) (PET)/copoly(oxybenzoate-p-terephthalate) (liquid crystalline polymer, LCP) (70/30 by weight) in the presence of small amount of bis(2-oxazoline) (BOZ) as chain extender was studied by using 1H nuclear magnetic resonance. The kinetic data was treated as a second-order reversible reaction, and it was found that the rate constants of transesterification at 270, 280 and 290 °C were 1.55×10−2, 2.20×10−2 and 3.01×10−2 min−1, respectively, the value of which was higher than the blend without addition of BOZ, 1.26×10−2 min−1, and the activation energy of PET/LCP transesterification was 84.4 kJ mol−1.  相似文献   

20.
Flame retardant recycled PET blends containing PC and triphenyl phosphite (TPP) have been designed using the following sequential processing strategy: PET and PC are first melt blended with a transesterification catalyst, allowing the compatibilisation of the blend, before adding TPP. The presence of this last component was shown to stop the transesterification reaction between PET and PC, avoiding chain breaking. In addition, TPP acts as a chain extender of PET, allowing the average chain length to be increased. The optimized blends obtained present “V-0” UL94 rating due to a better thermal stability leading to low flammability and to the development of an important, stable and covering char layer, resulting in self-extinguishability and very low Heat Release Rates during combustion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号