首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
吕雅茹  翟雪静  王珊  徐虹  王锐  臧双全 《催化学报》2021,42(3):490-500,中插53-中插60
氧还原反应在一些能源转换系统如金属-空气电池中起着至关重要的作用.目前贵金属基材料(Pt/C)被认为是最有效的氧还原电催化剂,然而价格昂贵和储量有限等因素限制了它的商业化应用,因此探索高效的非贵金属氧还原电催化剂具有重要的意义.近年来,负载过渡金属铁的多孔碳催化剂由于独特的结构和优异的氧还原催化活性成为替代铂基催化剂最有潜力的候选者.该类材料的合成通常采用直接煅烧含有氮源、碳源和铁盐的混合前驱体的制备方法,但是热解时材料的多孔结构以及活性位点的均匀分布很难得到有效的控制.近年来,金属有机框架(MOFs)由于其多孔结构和组成可控等优点而经常被用作自牺牲模板来制备负载铁基纳米材料的多孔碳催化剂,并表现出优异的电催化活性.目前以MOF为前驱体制备高活性的载铁氮掺杂碳复合材料通常需要引入额外的氮源或铁源,因此选择氮含量丰富的铁基MOF材料作为单源前驱体制备载铁氮掺杂多孔碳复合材料具有重要的意义.除此之外,具有多级孔隙率的催化剂可以改善反应时的传质过程,同时有序交联的网络结构能够提供连续的电子传输.本文报道了一种简单可控的制备具有三维有序大孔结构的载铁氮掺杂多孔碳复合催化剂的合成方法,该材料表现出优异的电催化氧气还原性能和优异的催化稳定性.首先,以氮含量丰富的双氰胺和吡嗪配体所构筑的Fe-MOF作为前驱体,利用具有均一尺寸的聚苯乙烯微球作为造孔剂,合成得到了具有三维有序大孔结构的Fe-MOF前驱体,然后通过高温煅烧该单源前驱体制备得到具有三维有序大孔结构的氮掺杂多孔碳包覆铁-氮合金的复合型催化剂(3DOM Fe/Fe-NA@NC).扫描电镜和透射电镜结果表明,材料内形成了有序交联的大孔结构;氮气吸附测试表明,刻蚀之后材料的比表面积明显增加,结合分级多孔特性可以共同促进催化反应的传质过程.粉末X射线衍射结果证实了多孔碳材料中铁和铁-氮合金物种的成功合成.电化学测试结果表明,在0.1 M KOH电解液中,3DOM Fe/Fe-NA@NC-800催化剂表现出优于Pt/C的氧还原活性,其半波电位(E1/2)为0.88 V,大于商业Pt/C的半波电位(E1/2=0.85 V).同时,3DOM Fe/Fe-NA@NC-800表现出更加优异的稳定性,经过20000 s测试后,其电流保持率为94%,而Pt/C只保持了78%.关于活性位点探究的对比实验证明在所制备的复合材料中,铁物种作为高效的活性位点参与了电催化氧还原反应,与氮掺杂多孔碳之间的协同作用共同主导了3DOM Fe/Fe-NA@NC优异的氧还原活性.得益于其优异的氧还原活性,将其作为阴极活性材料组装为锌-空气电池进一步探究了其在实际应用中的可行性.本结果拓宽了高效的铁基催化剂的类型,同时也为制备封装非贵金属的多孔碳基催化剂提供了实验指导和理论依据.  相似文献   

2.
Rational designs of electrocatalytic active sites and architectures are of great importance to develop cost-efficient non-noble metal electrocatalysts towards efficient oxygen reduction reaction (ORR) for high-performance energy conversion and storage devices. In this work, active amorphous Fe-based nanoclusters (Fe NC) are elaborately embedded at the inner surface of balloon-like N-doped hollow carbon (Fe NC/Ch sphere) as an efficient ORR electrocatalyst with an ultrathin wall of about 10 nm. When evaluated for electrochemical performance, Fe NC/Ch sphere exhibits decent ORR activity with a diffusion-limited current density of ~5.0 mA/cm2 and a half-wave potential of ~0.81 V in alkaline solution, which is comparable with commercial Pt/C and superior to Fe nanoparticles supported on carbon sheet (Fe NP/C sheet) counterpart. The electrochemical analyses combined with electronic structure characterizations reveal that robust Fe-N interactions in amorphous Fe nanoclusters are helpful for the adsorption of surface oxygen-relative species, and the strong support effect of N-doped hollow carbon is benefitial for accelerating the interfacial electron transfer, which jointly contributes to improve ORR kinetics for Fe NC/Ch sphere.  相似文献   

3.
Layer-structured FeOCl was used as a novel inorganic template and the Fe doping source for the facile synthesis of three-dimensional polypyrrole structures which can be converted into mesoporous Fe3C/Fe-N-doped carbon catalysts for efficient and robust oxygen reduction reaction.  相似文献   

4.
Nitrogen‐doped CoO (N‐CoO) nanoparticles with high electrocatalytic activity for the oxygen‐reduction reaction (ORR) were fabricated by electrochemical reduction of CoCl2 in acetonitrile solution at cathodic potentials. The initially generated, highly reactive nitrogen‐doped Co nanoparticles were readily oxidized to N‐CoO nanoparticles in air. In contrast to their N‐free counterparts (CoO or Co3O4), N‐CoO nanoparticles with a N content of about 4.6 % exhibit remarkable ORR electrocatalytic activity, stability, and immunity to methanol crossover in an alkaline medium. The Co?Nx active sites in the CoO nanoparticles are held responsible for the high ORR activity. This work opens a new path for the preparation of nitrogen‐doped transition metal oxide nanomaterials, which are promising electrocatalysts for fuel cells.  相似文献   

5.
High-performance and low-cost bifunctional catalysts are crucial to energy conversion and storage devices. Herein, a novel oxygen electrode catalyst with high oxygen evolution reaction and oxygen reduction reaction (OER/ORR) performance is reported based on bimetal FeNi nanoparticles anchored on N-doped graphene-like carbon (FeNi/N−C). The complete 2D ultrathin carbon nanosheet is induced by etching and stripping of molten sodium chloride and its ions in the carbonization process at suitable temperature. The obtained FeNi/N−C catalyst exhibits rapid reaction kinetics for OER, efficient four electron transfer for ORR, and outstanding bifunctional performance with reversible oxygen electrode index of 0.87 V for OER/ORR. Zn-air batteries with a high open-circuit voltage of 1.46 V and a stable discharge voltage of 1.23 V are assembled using liquid electrolytes, zinc sheet as Zn-electrode and FeNi/N−C coating on carbon cloth as air-electrode. The specific capacity is as high as 816 mAh g−1 and there is extremely little decay after charge-discharge cycle time of 275 h for the FeNi/N−C as oxygen electrode catalyst in Zn-air battery, which are much better than that assembled with Pt/C−RuO2 catalyst.  相似文献   

6.
The development of alternative electrocatalysts exhibiting high activity in the oxygen reduction reaction (ORR) is vital for the deployment of large-scale clean energy devices, such as fuel cells and zinc–air batteries. N-doped carbon materials offer a promising platform for the design and synthesis of electrocatalysts due to their high ORR activity, high surface area, and tunable porosity. In this study, materials in which MnO nanoparticles are entrapped in N-doped mesoporous carbon (MnO/NC) were developed as electrocatalysts for the ORR, and their performances were evaluated in zinc–air batteries. The obtained carbon materials had large surface area and high electrocatalytic activity toward the ORR. The carbon compounds were fabricated by using NaCl as template in a one-pot process, which significantly simplifies the procedure for preparing mesoporous carbon materials and in turn reduces the total cost. A primary zinc–air battery based on this material exhibits an open-circuit voltage of 1.49 V, which is higher than that of conventional zinc–air batteries with Pt/C (Pt/C cell) as ORR catalyst (1.41 V). The assembled zinc–air battery delivered a peak power density of 168 mW cm−2 at a current density of about 200 mA cm−2, which is higher than that of an equivalent Pt/C cell (151 mW cm−2 at a current density of ca. 200 mA cm−2). The electrocatalytic data revealed that MnO/NC is a promising nonprecious-metal ORR catalyst for practical applications in metal–air batteries.  相似文献   

7.
氧还原反应是燃料电池及金属空气电池中极其重要的电化学反应之一,贵金属铂基催化剂被认为是最有效的氧还原反应电催化剂.然而,贵金属铂的资源稀缺以及高成本问题阻碍了相关技术的大规模应用,探索发展廉价高效的贵金属替代型催化剂是推动燃料电池发展的根本解决方案.近年来,人们在非贵金属催化剂开发方面取得了显著进展,其中新型纳米结构掺杂炭材料研究尤为活跃.氮杂有序介孔炭材料由于其高比表面积和独特的孔结构,在燃料电池技术上具有广泛的应用前景.在氮杂有序介孔炭材料的制备过程中,热解条件对炭材料组成、结构及电催化性能有着重要影响.然而,目前尚未见对氮杂炭材料制备过程中热解条件的影响进行系统研究.
  本文采用我们发展的蒸汽化-毛细管冷凝法,以SBA-15为硬模板浸渍前驱体吡咯,制备出具有高比表面积和独特孔结构的氮杂有序介孔炭材料,系统研究了热解条件(包括热解温度、热解时间和升温速率)对炭材料组成、结构及电催化性能的影响,采用N2吸附-脱附等温线、X射线光电子能谱(XPS)及Raman光谱等方法考察了氮杂有序介孔炭材料的结构和组成,采用循环伏安法与旋转环盘电极研究了其电化学行为与氧还原反应电催化活性及选择性.
  N2吸附-脱附等温线显示,氮杂炭材料对应IV型吸附-脱附等温线,孔径主要分布在2–10 nm,表明所制材料具有介孔结构.随着热处理温度升高,氮杂有序介孔炭材料比表面积先增加而后降低,热处理时间的延长有利于比表面积增大,但升温速率对所制炭材料比表面积没有明显影响,当升温速率为30 oC/min,900 oC焙烧3 h时,氮杂有序介孔炭材料的比表面积达到最大值888 m2/g. XPS测试结果表明,随着热处理温度升高,氮杂有序介孔炭材料中含氮基团的分解进一步加深,使N含量逐渐降低.延长热处理时间亦然,而升温速率的改变对N含量无明显影响.在热处理温度较低时(600 oC),所得材料中N主要以吡咯氮和吡啶氮的形式存在;当温度达到800 oC以上,吡咯氮转化为吡啶氮和骨架氮,且主要以骨架氮形式存在,说明氮杂有序介孔炭材料的石墨化程度逐渐升高. Raman光谱结果显示,随着热处理温度升高, ID/IG逐渐降低,进一步印证了温度对石墨化程度的影响.
  电化学测试结果表明,随着热处理温度升高,氮杂有序介孔炭材料的氧还原反应电催化活性逐渐升高,但是当热处理温度从900 oC升至1000 oC时,氧还原反应活性增加很小;升温速率与热处理时间对氧还原反应电催化活性的影响均不明显.与商品Pt/C催化剂相比,900 oC以上所制催化剂均表现出更优异的氧还原电催化活性与选择性.由此可见,热处理温度是决定碳源热化学行为的关键因素,进而决定炭材料表面组成与结构.电化学研究结果表明,800 oC以上进行热处理碳化,所生成石墨化微晶可有效促进电子传递,降低欧姆极化损失,同时,较高的处理温度可促进骨架氮掺杂,从而构建出高效氧还原反应活性位点.因此,氮杂型炭催化剂的组成、结构与电化学性能更多地受控于热处理过程中的热力学,而非热解动力学过程.  相似文献   

8.
Two-dimensional (2D) porous carbon nanosheets (2DPCs) have attracted great attention for their good porosity and long-distance conductivity. Factors such as templates, precursors, and carbonization–activation methods, directly determine their performance. However, rational design and preparation of porous carbon materials with controlled 2D morphology and heteroatom dopants remains a challenge. Therefore, an ionic polyimide with both sp2- and sp3-hybridized nitrogen atoms was prepared as a precursor for fabricating N-doped hexagonal porous carbon nanosheets through a hard-template approach. Because of the large surface area and efficient charge-mass transport, the resulting activated 2D porous carbon nanosheets (2DPCs-a) displayed promising electrocatalytic properties for oxygen reduction reaction (ORR) in alkaline and acidic media, such as ultralow half-wave potential (0.83 vs. 0.84 V of Pt/C) and superior limiting current density (5.42 vs. 5.14 mA cm−2 of Pt/C). As air cathodes in Zn–air batteries, the as-developed 2DPCs-a exhibited long stability and high capacity (up to 614 mA h g−1), which are both higher than those of commercial Pt/C. This work provides a convenient method for controllable and scalable 2DPCs fabrication as well as new opportunities to develop high-efficiency electrocatalysts for ORR and Zn–air batteries.  相似文献   

9.
To accelerate the kinetics of the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells, ultrafine Pt nanoparticles modified with trace amounts of cobalt were fabricated and decorated on carbon black through a strategy involving modified glycol reduction and chemical etching. The obtained Pt36Co/C catalyst exhibits a much larger electrochemical surface area (ECSA) and an improved ORR electrocatalytic activity compared to commercial Pt/C. Moreover, an electrode prepared with Pt36Co/C was further evaluated under H2-air single cell test conditions, and exhibited a maximum specific power density of 10.27 W mgPt?1, which is 1.61 times higher than that of a conventional Pt/C electrode and also competitive with most state-of-the-art Pt-based architectures. In addition, the changes in ECSA, power density, and reacting resistance during the accelerated degradation process further demonstrate the enhanced durability of the Pt36Co/C electrode. The superior performance observed in this work can be attributed to the synergy between the ultrasmall size and homogeneous distribution of catalyst nanoparticles, bimetallic ligand and electronic effects, and the dissolution of unstable Co with the rearrangement of surface structure brought about by acid etching. Furthermore, the accessible raw materials and simplified operating procedures involved in the fabrication process would result in great cost-effectiveness for practical applications of PEMFCs.  相似文献   

10.
对氧气还原(ORR)和氧气析出(OER)反应都具有催化活性的双功能催化剂在金属-空气电池中起着关键作用.本文通过溶剂热反应,一步原位合成了磷掺杂碳纳米管(P-CNT).旋转环盘电极测试表明磷掺杂能够明显提高碳纳米管的催化活性,P-CNT在碱性电解质中对ORR和OER都具有优异的催化活性.P-CNT对ORR的催化还原为近4电子反应,可与商业催化剂Pt/C(20 wt%)相比;而其对OER的催化活性则高于Pt/C(20 wt%).此外,P-CNT的长期稳定性优于Pt/C(20 wt%).P-CNT对ORR和OER的高催化活性和稳定性主要归因于磷对碳的掺杂以及磷与碳间强的化学键合.  相似文献   

11.
The development of highly efficient metal-free electrocatalysts for the oxygen reduction reaction (ORR) has attracted great attention for the creation of electrochemical energy devices. In this study, one-dimensional (1 D) fullerene nanofibers prepared from liquid–liquid interfacial precipitation are first fabricated into fullerene-derived carbon nanofiber films (FCNFs) through a simple filtration procedure. Then, pyrolysis of the FCNFs in the presence of ammonia and sulfur produces N- and S-co-doped porous carbon nanofiber films (N,S-PCNFs). As excellent metal-free electrocatalysts for the ORR, N,S-PCNFs exhibit remarkable catalytic activity, superior stability, and excellent methanol tolerance in both alkaline and acidic solution. Such a high ORR performance benefits from the robust porous nanofiber network structure with high concentrations of active N- and S- groups and abundant defects. Notably, upon practical use of N,S-PCNFs as catalysts in Zn-air batteries, a high power density and a large operating voltage are achieved, with a performance comparable to that of the commercial Pt/C catalyst. This work presents a facile strategy for the creation of a new class of energy nanomaterials based on fullerenes, demonstrating their practical uses in electrocatalytic ORR processes and Zn-air batteries.  相似文献   

12.
A novel gas diffusion electrode using binary carbon supports (carbon nanotubes and active carbon) as the catalyst layer was prepared. The electrochemical properties for oxygen reduction reaction (ORR) in alkaline electrolyte were investigated by polarization curves and electrochemical impedance spectroscopy. The results show that the binary-support electrode exhibits higher electrocatalytic activity than the single-support electrode, and the best performance is obtained when the mass ratio of carbon nanotubes and activated carbon is 50 ∶50. The results from their electrode kinetic parameters indicate that the introduction of carbon nanotubes as a secondary support provides high accessible surface area, good electronic conductivity and fast ORR kinetics. The electrocatalytic activity of binary-support electrodes is obviously improved by the deposition of Pt nanoparticles on carbon nanotubes, even at very low Pt loading (45.7 μg/cm2). In addition, the EIS analysis results show that the process of ORR may be controlled by diffusion of oxygen in the thin film for binary-support electrodes with or without Pt catalyst.  相似文献   

13.
The present research aimed at investigating the electrocatalytic properties and the electrochemical deposition of Pt nanoparticles on carbon powder, carbon nanotube and preparation of carbon and single wall carbon nanotube supported platinum electrodes. The Pt nanoparticles were synthesized by electroreduction of hexachloroplatinic acid in aqueous solution at ?200 mV. Electrocatalytic properties of the modified electrodes for oxygen reduction were investigated by cyclic voltammetry in O2 saturated solution containing 0.1 M HClO4. Methanol electrooxidation at the modified surfaces in 0.5 M HCLO4 was studied by cyclic voltammetry. The corresponding results showed that the Pt/SWCNT/GC electrode exhibits more improved catalytical activity than the Pt/C/GC electrode.  相似文献   

14.
质子交换膜燃料电池Pd修饰Pt/C催化剂的电催化性能   总被引:2,自引:1,他引:2  
吕海峰  程年才  木士春  潘牧 《化学学报》2009,67(14):1680-1684
通过对Pt催化剂表面进行Pd修饰提高质子交换膜燃料电池阴极催化剂的氧还原反应(ORR)活性. 采用乙二醇还原法制备了不同比例的Pd修饰Pt/C催化剂. 透射电镜(TEM)和X射线衍射(XRD)测试结果表明, 制备的催化剂贵金属颗粒粒径主要分布在1.75~2.50 nm之间, 并均匀地分散在碳载体表面. 循环伏安方法(CV)研究表明Pd修饰Pt/C催化剂的电化学活性面积低于传统的Pt/C催化剂. 但通过旋转圆盘电极(RDE)测试研究发现, 制备的催化剂具有比传统Pt/C催化剂高的ORR活性.  相似文献   

15.
Alloying high-cost Pt with transition metals has been considered as an effective route to synthesize the electrocatalysts with low Pt loading and excellent activity towards oxygen reduction reaction (ORR) under acid solution. The galvanic replacement method, as featured with efficiency and simplicity, is widely reported to produce Pt-based bimetallic alloys and thereby declare the significance of reductive transition metal precursor on the enhancement of ORR performance. Herein, mix-phased Cu−Cu2O precursor was applied to prepare carbon black supported highly dispersed PtCu alloy nanoparticles (PtCu/C). The proper Cu−Cu2O ratios can exactly facilitate the generation of small sized PtCu alloy nanoparticles with regulated bimetallic content. Meanwhile, the Cu2O phase is revealed to benefit the electron transfer from Pt to Cu and thus improve the intrinsic activity of Pt active sites. And the metallic Cu can favor the promotion of electrochemical active surface area. Consequently, the as-prepared PtCu/C behaves impressive ORR activity with half-wave potential of 0.88 V (vs. RHE) and mass activity of 0.49 A cm−2 mgPt−1 at 0.8 V, which is 9.8 times of commercial Pt/C catalysts. Our work will offer helpful advices for the development and regulation of novel Pt-based alloy materials towards diverse electrocatalysis.  相似文献   

16.
In this paper, we report the use of binary carbon supports (carbon nanotubes (CNTs) and active carbon) as a catalyst layer for fabricating gas diffusion electrodes. The electrocatalytic properties for the oxygen reduction reaction (ORR) were evaluated by polarization curves and electrochemical impedance spectroscopy (EIS) in an alkaline electrolyte. The binary-support electrode exhibits better performance than the single-support electrode, and the best performance is obtained when the mass ratio of carbon nanotubes and active carbon is 50:50. The results from the electrode kinetic parameters indicate that the introduction of carbon nanotubes as a secondary support provides high accessible surface area, good electronic conductivity, and fast ORR kinetics. Furthermore, the effect of CNT support on the electrocatalytic properties of Pt nanoparticles for binary-support electrodes was also investigated by different loading-reduction methods. The electrocatalytic activity of the binary-support electrodes is improved dramatically by Pt loading on CNT carbon support, even at very low Pt loading. Additionally, the EIS analysis results indicate that the process of ORR may be controlled by diffusion of oxygen in the electrode thin film for binary-support electrodes with or without Pt catalyst.  相似文献   

17.
杨慧敏  张佰艳  张斌  高哲  覃勇 《催化学报》2018,39(6):1038-1043
甲醇燃料电池作为一种清洁、高效的能源转化形式广受关注. 贵金属 Pt 是甲醇燃料电池阳极催化剂不可缺少的活性组分, 但 Pt 价格昂贵, 易与 CO 等中间体强相互作用而中毒失活, 从而限制了甲醇燃料电池的广泛应用. 因此, 如何提高Pt 的利用率成为一个关键问题. 研究表明, 在碳材料载体中掺杂氮元素, 改变了载体本身的表面结构和电子性质, 有利于Pt 颗粒的成核和生长, 可获得尺寸小、分布均匀的 Pt 纳米颗粒, 能显著提升催化反应活性和 Pt 利用率. 然而, 传统的氮掺杂方法需要在高温、高压及氨气条件下进行, 增加了催化剂制备难度和成本.原子层沉积技术是逐层超薄沉积技术, 能够在原子级别精确控制膜的厚度, 既可制备尺度均一、高度可控的纳米粒子,也能实现材料表面的可控超薄修饰. 本课题组利用原子层沉积技术优势, 首先在碳纳米管表面沉积了直径 2 nm 左右的 Pt纳米颗粒, 然后在 Pt 纳米颗粒外表面超薄修饰聚酰亚胺膜, 通过后处理得到多孔掺氮碳膜修饰的 Pt/CNTs 催化剂. 碳膜的厚度可简单通过调控聚酰亚胺膜的沉积厚度来控制. 结果表明, 适当厚度的碳膜修饰 Pt/CNTs 催化剂可显著提升其甲醇电氧化性能, 电流密度可达商业 20% Pt/C 的 2.7 倍, 催化剂稳定性也显著改善. 然而碳膜修饰过厚会导致催化剂活性降低.通过计算催化剂电化学活性表面积发现, 超薄修饰碳膜后催化剂活性表面积有所降低, 这是由于碳膜的覆盖导致表面 Pt原子数减少. 修饰前后催化剂颗粒尺度变化不大, 推测催化剂活性的提高与形成了有利于催化反应的 Pt-碳膜界面有关.然而, 当碳膜修饰层过厚时, 会导致反应物分子难以扩散到 Pt 颗粒表面, 使催化剂活性降低. 预吸附单层 CO 溶出实验结果表明, 多孔掺氮碳膜超薄修饰 Pt/CNTs 催化剂后, CO 氧化峰的起始电位和峰值电位都向低电位处偏移, 这表明 Pt 表面吸附的 CO 在较低电位下即可被氧化, CO 更容易从 Pt 表面移除, 从而提高了催化剂的抗 CO 毒化能力. X 射线光电子能谱实验结果进一步表明, 经多孔掺氮碳膜修饰后, Pt 的 4f 电子向高结合能处偏移, 表明 Pt 原子周围的电子密度减小, 从而弱化了 Pt 对 CO 吸附的σ-π键反馈作用, 即减弱了 Pt 原子对 CO 的吸附, 这是导致掺氮碳膜修饰后催化剂活性及稳定性都大幅提高的原因.  相似文献   

18.
刘芳艳  张倩  李玥琨  黄丰  王梦晔 《电化学》2021,27(3):301-310
氧还原反应是燃料电池中重要的阴极反应,但由于动力学迟缓等问题导致其效率低。碳基材料具有导电性高、稳定性好、比表面积大等优点,常被应用于电催化氧还原反应。然而其在电催化氧还原反应中效率较低,对碳基材料进行Co、Mn掺杂有望提高其氧还原效率。本文采用静电纺丝技术制备出含有Co,Mn双金属的碳纳米纤维,经热解和硫化后碳纳米纤维上形成许多包裹Co1-xS和MnS纳米颗粒的碳纳米管(记为Co1-xS-MnS@CNTs/CNFs),垂直生长在碳纳米纤维表面。通过X射线衍射、场发射扫描电子显微镜、高分辨透射电子显微镜、X射线光电子能谱对Co1-xS-MnS@CNTs/CNFs的形貌、结构和组成进行表征,发现仅在Co1-xS和MnS同时存在的情况下碳纳米纤维表面才能生长碳纳米管。小颗粒的MnS为碳纳米管的生成提供成核位点,大颗粒的Co1-xS促进碳纳米管生长,最终形成Co1-xS-MnS@CNTs/CNFs。碳纳米管的形成不仅在金属颗粒表面形成一道屏障,防止其聚集、溶解,而且提高了碳纳米纤维的导电性,使其电催化性能及稳定性得到很大提升。电催化测试证明,Co1-xS-MnS@CNTs/CNFs相较于不含金属的碳纳米纤维(CNFs)及含单金属的硫化锰碳纳米纤维(MnS/CNFs)或硫化钴碳纳米纤维(Co1-xS/CNFs)具有更优异的电催化氧还原(ORR)性能,且在氧还原反应过程中表现出高效的四电子转移。其甲醇耐受性及长期稳定性显著优于商业Pt/C电催化剂。  相似文献   

19.
The chemical dealloying mechanism of bimetallic Pt–Co nanoparticles (NPs) and enhancement of their electrocatalytic activity towards the oxygen reduction reaction (ORR) have been investigated on a fundamental level by the combination of X‐ray absorption spectroscopy (XAS) and aberration‐corrected scanning transmission electron microscopy (STEM). Structural parameters, such as coordination numbers, alloy extent, and the unfilled d states of Pt atoms, are derived from the XAS spectra, together with the compositional variation analyzed by line‐scanning energy‐dispersive X‐ray spectroscopy (EDX) on an atomic scale, to gain new insights into the dealloying process of bimetallic Pt–Co NPs. The XAS results on acid‐treated Pt–Co/C NPs reveal that the Co–Co bonding in the bimetallic NPs dissolves first and the remaining morphology gradually transforms to a Pt‐skin structure. From cyclic voltammetry and mass activity measurements, Pt–Co alloy NPs with a Pt‐skin structure significantly enhance the catalytic performance towards the ORR. Further, it is observed that such an imperfect Pt‐skin surface feature will collapse due to the penetration of electrolyte into layers underneath and cause further dissolution of Co and the loss of Pt. The electrocatalytic activity decreases accordingly, if the dealloying process lasts for 4 h. The findings not only demonstrate the importance of appropriate treatment of bimetallic catalysts, but also can be referred to other Pt bimetallic alloys with transition metals.  相似文献   

20.
蔡雅芝  陶李  黄根  张娜娜  邹雨芹  王双印 《催化学报》2021,42(6):938-944,中插1-中插5
氧的电催化还原反应是燃料电池装置与金属空气电池的阴极反应,具有重大的研究意义.在众多的非铂催化剂中,碳材料因其低廉的价格以及独特的物理化学性质受到了广泛的关注.自从发现氮掺杂的碳纳米阵列具有优异的氧还原活性后,不同类型的氮掺杂的碳也得到了深入研究.例如近年来兴起的由金属有机框架衍生的氮掺杂的碳材料,兼具丰富的氮位点及良好的三维结构.氮的掺杂对碳原子具有电子调控的作用,是其高氧还原活性的根本原因.本文对金属有机框架衍生的氮掺杂的碳材料进行进一步的电子结构的优化,以提升催化性能.功函是电子逸出表面所需的最少的能量,是材料的电子结构性质之一,其对氧还原反应的影响也有报道,早期以理论计算为基础,探究氧气分子在碳材料表面的解离能与氮掺杂的碳的表面功函的关系,后续则采用开尔文探针显微镜,直接测量了不同元素掺杂的碳表面功函,并建立起功函与氧还原动力学的线性关系.本文通过控制碳材料的功函来调节其电子结构.铯是一种经典的给电子物质,通过将电子注入到掺杂材料表面来降低其功函.因此,本文通过CsCO3与2-甲基咪唑、Zn(NO3)2煅烧形成铯修饰的氮掺杂碳.电镜及XRD均观察不到所得材料中铯的存在,证明碳层中无大颗粒团聚的铯物种.EDS元素分布图表明,铯在碳层中呈原子级均匀分布.Raman谱结果表明,碳的G带发生明显的位置偏移,证明其面内电子结构发生了明显的改变.XPS结果证明铯成功与氮原子配位,通过铯氮键将电子注入到碳骨架.UPS则最终显示,经过铯的修饰,碳表面功函从4.25 eV下降到3.6 eV.表面功函的降低有利于氧气分子的解离,也调节OOH*中间体的吸附,使其吸附的自由能更接近最优值.材料改性后氧还原性能明显提升,起始电位达到0.91 V vs RHE,半波电位达到0.83 V vs RHE,均接近商业Pt/C催化剂.氧还原反应的动力学电流密度随功函的降低而增大,验证了前人的结论.本文提供了一个较为新颖的电子结构调控策略,为设计新的氧还原催化剂提供了新的思路.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号