首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyhedral oligomeric silsesquioxanes (POSS) have attracted considerable attention in the design of novel organic-inorganic hybrid materials with high performance capabilities. Features such as their well-defined nanoscale structure, chemical tunability, and biocompatibility make POSS an ideal building block to fabricate hybrid materials for biomedical applications. This review highlights recent advances in the application of POSS-based hybrid materials, with particular emphasis on drug delivery, photodynamic therapy and bioimaging. The design and synthesis of POSS-based materials is described, along with the current methods for controlling their chemical functionalization for biomedical applications. We summarize the advantages of using POSS for several drug delivery applications. We also describe the current progress on using POSS-based materials to improve photodynamic therapies. The use of POSS for delivery of contrast agents or as a passivating agent for nanoprobes is also summarized. We envision that POSS-based hybrid materials have great potential for a variety of biomedical applications including drug delivery, photodynamic therapy and bioimaging.  相似文献   

2.
YUE  Dong-mei  YU  Jiong 《高等学校化学研究》2003,19(1):112-119
The polymerizatioin of amplhiphilic self-assemblies is a promising method to synthesize nano-structured materials with novel properties.These materials have many attractive features for their application in biomedical area and materials science.Such as catalysis.separtion,surface modification,and therapeutics areas.A general review on the polymerization of lipids and surfactant self-assemblies to amplhiphilic self-assemblies is given in this paper with 49 references,The polymerization and the subsequently resulted structure of lipids in different morphologies are summarized.The polymerization of polymerizable surfactants (surfmers)in emulsion and liquid crystalline phases are also discussed.The potential application of new nano-porous materials is briefly described.  相似文献   

3.
生物医用高分子纤维材料   总被引:1,自引:0,他引:1  
综述了医用的高分子纤维材料及其改性的方法。医用高分子纤维材料包括天然高分子及合成高分子两大类。其中包括不可降解的及可降解的高分子纤维材料。利用聚合物共混、交联、纤维表面改性,如等离子体处理、纤维表面化学反应及聚合物的表面接枝等物理化学方法可对医用纤维进行改性,改善纤维的力学性能、生物相容性,并使之具有细胞粘附性,利于组织的生长。  相似文献   

4.
综述了国内外应用生物多糖进行医用高分子材料表面修饰的研究状况,其中重点介绍了葡聚糖、肝素及类肝素类物质、壳聚糖等多糖在高分子材料表面修饰的研究近况.多糖是自然界中含量最为丰富的生物大分子,几乎存在于所有的生命体中,具有很好的生物相容性,而且某些生物多糖还具有特殊的生物活性,因此用生物多糖进行医用高分子材料的表面修饰受到了国内外研究学者的关注.大量研究表明,经过生物多糖表面修饰的高分子材料可获得良好的生物相容性和某些优良的医学应用性能.  相似文献   

5.
The response of host organism in macroscopic, cellular and protein levels to biomaterials is, in most cases, closely associated with the materials’ surface properties. In tissue engineering, regenerative medicine and many other biomedical fields, surface engineering of the bio-inert synthetic polymers is often required to introduce bioactive species that can promote cell adhesion, proliferation, viability and enhanced ECM-secretion functions. Up to present, a large number of surface engineering techniques for improving biocompatibility have been well established, the work of which generally contains three main steps: (1) surface modification of the polymeric materials; (2) chemical and physical characterizations; and (3) biocompatibility assessment through cell culture. This review focuses on the principles and practices of surface engineering of biomedical polymers with regards to particular aspects depending on the authors’ research background and opinions. The review starts with an introduction of principles in designing polymeric biomaterial surfaces, followed by introduction of surface modification techniques to improve hydrophilicity, to introduce reactive functional groups and to immobilize functional protein molecules. The chemical and physical characterizations of the modified biomaterials are then discussed with emphasis on several important issues such as surface functional group density, functional layer thickness, protein surface density and bioactivity. Three most commonly used surface composition characterization techniques, i.e. ATR-FTIR, XPS, SIMS, are compared in terms of their penetration depth. Ellipsometry, CD, EPR, SPR and QCM's principles and applications in analyzing surface proteins are introduced. Finally discussed are frequently applied methods and their principles to evaluate biocompatibility of biomaterials via cell culture. In this section, current techniques and their developments to measure cell adhesion, proliferation, morphology, viability, migration and gene expression are reviewed.  相似文献   

6.
聚氨酯因其具有优异的力学性能和良好的生物相容性广泛地应用于医疗领域.但医用聚氨酯常常会引起蛋白吸附、血小板激活、凝血、血栓和补体激活等不良生物学反应,使其应用受到限制.仿生物膜的磷脂表面被认为是和人体最亲和的表面,聚氨酯磷脂化是提高医用聚氨酯材料生物相容性的非常有效的手段之一.近年来国内外课题组在生物医用磷脂化聚氨酯的设计、制备与生物相容性等方面开展了大量的工作,取得了重要的研究进展.本文综述了磷脂改进医用聚氨酯的最新研究成果,指出含氟磷脂化聚氨酯和可降解的磷脂聚氨酯因其优异的性能,代表了该领域的发展方向并具有重要的应用前景.  相似文献   

7.
Impressive advances in biotechnology, bioengineering, and biomaterials with unique properties have led to increased interest in polymers and other novel materials in biological and biomedical research and development over the past two decades. Although biomaterials have already made an enormous impact in biomedical research and clinical practice, there is a need for better understanding of the surface and interfacial chemistry between tissue (or cells) and biomedical materials. This is because the detailed physicochemical events related to the biological response to the surface of materials still often remain obscure, even though surface properties are important determinants of biomedical material function. In this regard, data available in the literature show the complexity of the interactions (surface reorganization, non-specific/specific protein adsorption, and chemical reactions such as acid-base, ion pairing, ion exchange, hydrogen bonding, divalent-ion bridging) and the interrelationship between biological environments, interfacial properties, and surface functional groups responsible for the biological responses. Because of the multidisciplinary nature of surface and interfacial phenomena at the surface of biomedical polymers, this review focuses on several aspects of current work published on poly(alpha-hydroxy acid)s and their associated copolymers:surface structure-biomedical function relationships;physicochemical strategies for surface modification; and, finally,synthetic strategies to increase biocompatibility for specific in-vivo and/or in-vitro biomedical applications.  相似文献   

8.
Carbon nanodots (CNDs) are a developing branch of nanomaterials and nanoscience. This has generated much more interest in the field and class of biomedicine science by way of unique particular properties, such as high stability, great photoluminescence, easy green synthesis, and simple surface modification. Numerous applications, such as bioimaging, biosensing, and treatment, have made use of CNDs. This review describes the most recent developments in CND research and talks about major changes in the understanding of CNDs and their prospects as biomedical tools. The importance of this work lies in the ability of CNDs to overcome many of the limitations associated with traditional materials used in biomedicine, such as toxicity, poor biocompatibility, and limited functionality. Furthermore, the use of CNDs as drug carriers, imaging agents, and sensors has shown great potential in improving the diagnosis and treatment of various diseases. The novelty of this work lies in the diversity of approaches used in the synthesis and functionalization of CNDs, and the unique properties of CNDs that make them versatile tools for biomedicine. In particular, the ability to tune the size, shape, and surface chemistry of CNDs allows for the creation of tailored materials with specific biomedical applications. The review also discusses the challenges and future prospects of CNDs in biomedicine, including the need for standardization and optimization of CND synthesis, functionalization, and characterization protocols.  相似文献   

9.
金纳米棒因其独特的光学活性(纵向和横向两个等离子体共振吸收峰,可调范围从可见光区到近红外区)、长径比可调,表面易于修饰,生物相容性良好而使得其在纳米生物学和生物医学等领域具有广泛的应用前景。金纳米棒的合成及表面修饰直接决定着其物理化学性质,进而影响其生物相容性及其在生物医学中的应用。本文综述了金纳米棒的可控制备方法(包括模板法、电化学法、光化学法和晶种法)、表面可控修饰方法及其在纳米生物学和生物医学中的应用新进展,重点总结了金纳米棒的表面可控修饰及其在分子探针、生物传感、生物成像、药物载体、基因载体和光热疗法的最新研究进展。最后针对金纳米棒在生物应用过程中的一些瓶颈问题(如:特异性识别能力需要增强和荧光量子产率尚待提高等)提出了将手性分子或智能聚合物引入到金纳米棒表面进行可控修饰,以期增强其特异性识别能力并提高荧光量子产率,为金纳米棒的发展提供了新的思路。  相似文献   

10.
Biomedical application of graphene derivatives have been intensively studied in last decade. With the exceptional structural, thermal, electrical, and mechanical properties, these materials have attracted immense attention of biomedical scientists to utilize graphene derivatives in biomedical devices to improve their performance or to achieve desired functions. Surfaces of graphene derivatives including graphite, graphene, graphene oxide and reduce graphene oxide have been demonstrated to pave an excellent platform for antimicrobial behavior, enhanced biocompatibility, tissue engineering, biosensors and drug delivery. This review focuses on the recent advancement in the research of biomedical devices with the coatings or highly structured polymer nanocomposite surfaces of graphene derivatives for antimicrobial activity and sterile surfaces comprising an entirely new class of antibacterial materials. Overall, we aim to highlight on the potential of these materials, current understanding and knowledge gap in the antimicrobial behavior and biocompatibility to be utilized of their coatings to prevent the cross infections.  相似文献   

11.
Nanodiamonds (NDs) have garnered attention in the field of nanomedicine due to their unique properties. This review offers a comprehensive overview of NDs synthesis methods, properties, and their uses in biomedical applications. Various synthesis techniques, such as detonation, high-pressure, high-temperature, and chemical vapor deposition, offer distinct advantages in tailoring NDs′ size, shape, and surface properties. Surface modification methods further enhance NDs′ biocompatibility and enable the attachment of bioactive molecules, expanding their applicability in biological systems. NDs serve as promising nanocarriers for drug delivery, showcasing biocompatibility and the ability to encapsulate therapeutic agents for targeted delivery. Additionally, NDs demonstrate potential in cancer treatment through hyperthermic therapy and vaccine enhancement for improved immune responses. Functionalization of NDs facilitates their utilization in biosensors for sensitive biomolecule detection, aiding in precise diagnostics and rapid detection of infectious diseases. This review underscores the multifaceted role of NDs in advancing biomedical applications. By synthesizing NDs through various methods and modifying their surfaces, researchers can tailor their properties for specific biomedical needs. The ability of NDs to serve as efficient drug delivery vehicles holds promise for targeted therapy, while their applications in hyperthermic therapy and vaccine enhancement offer innovative approaches to cancer treatment and immunization. Furthermore, the integration of NDs into biosensors enhances diagnostic capabilities, enabling rapid and sensitive detection of biomolecules and infectious diseases. Overall, the diverse functionalities of NDs underscore their potential as valuable tools in nanomedicine, paving the way for advancements in healthcare and biotechnology.  相似文献   

12.
表面接枝聚合改性已经成为提升生物医用材料性能的最重要方法之一.参比其他活性接枝聚合方法,光引发活性接枝聚合因其独特的优势已被越来越广泛地应用于生物医用材料表面改性.根据光引发剂的类型,目前应用最多的光引发活性接枝聚合的引发体系主要有3种:光引发-转移-终止剂介导的聚合引发体系、二苯甲酮及其衍生物引发体系、硫杂蒽酮类引发体系.本文首先简要介绍了上述3种光引发活性接枝聚合体系的发展历程、接枝机理以及特点.同时结合本课题组相关研究工作,重点论述了光引发接枝聚合技术在3个不同生物医用领域的主要应用:(1)抗菌表面,利用光活性接枝的特点构建层状功能高分子刷,实现表面抗菌功能的阶段性需求.(2)免疫检测表面,使用光活性接枝方法构建层状功能高分子刷,解决检测灵敏度低以及蛋白干扰问题.(3)生物活性分子表面固定,利用可见光活性接枝聚合体系,实现酶在表面的固定化使用以及细胞表面修饰以提高细胞稳定性.最后展望了生物医用材料表面光引发活性接枝聚合研究的发展趋势.  相似文献   

13.
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate), commonly referred to PHBV, are promising materials for tissue engineering applications because they are biodegradable, non-toxic and biocompatible. The surface modified PHBV and hybrid PHBV allow favorable mechanical properties, biocompatibility, and degradation times within desirable time frames under specific physiological conditions. We will shortly summarize what has been achieved in the PHBV tissue engineering area, namely, the surface modification reactions including functionalization and grafting reactions, as well as blending or compositing with other materials to improve the mechanical, thermal and hydrophilic properties, and the influence on cell-material interactions is also overviewed in the recent 5 years (from 2008 to 2012).  相似文献   

14.
Host responses toward foreign implants that lead to chronic inflammation and fibrosis may result in failure of the biomedical device. To solve these problems, first a better understanding of the biomaterial‐induced host reactions including protein adsorption, leukocyte activation, inflammatory and fibrotic responses to biomaterials is required; second an improved design of biomaterial surfaces is needed that results in an appropriate host response, causing less inflammatory response, and supporting tissue regeneration. Hence, this review provides a brief overview on the host response to implants, as well as in vitro models to study inflammatory and fibrotic responses to biomaterials to predict the clinical outcome of implantation. Moreover, the review highlights anti‐inflammatory strategies to improve the biocompatibility of implants, which contain the modification of physicochemical surface properties of materials as well as the immobilization of anti‐inflammatory reagents and bioactive molecules on biomaterials.  相似文献   

15.
聚羟基脂肪酸酯是一种新型合成的脂肪族聚酯,同聚乳酸相似,具有优异的生物相容性能、生物可降解性和优良的力学机械性能,可作为生物医用材料和生物可降解包装材料,是最具前景的环境友好型聚合材料之一。目前合成聚乳酸和聚羟基脂肪酸酯的化学方法主要有开环聚合法、直接缩聚法以及自身酯交换聚合法,不过后者研究得较少。本文对这3种方法的研究进展进行了叙述,重点讨论了开环聚合法和直接缩聚法,尤其对开环聚合中的配位插入聚合的新进展进行了较详细的论述。  相似文献   

16.
PREFACE     
Ze-Sheng An  Zhi-Bo Li  Zi-Chen Li 《高分子科学》2021,39(9):前插1-前插2
正We are delighted to present this special themed topic of Chinese Journal of Polymer Science(CJPS) devoted to the recent advances in reversible deactivation radical polymerization(RDRP). RDRP has been widely recognized as one of the most important synthetic methods for polymers, allowing access to well-defined polymeric materials with predictable molecular weight, controlled dispersity, and tailor-made architecture. Since its discovery,  相似文献   

17.
Electrically responsive biomaterials are an important and emerging technology in the fields of biomedical and material sciences. A great deal of research explores the integral role of electrical conduction in normal and diseased cell biology, and material scientists are focusing an even greater amount of attention on natural and hybrid materials as sources of biomaterials which can mimic the properties of cells. This review establishes a summary of those efforts for the latter group, detailing the current materials, theories, methods, and applications of electrically conductive biomaterials fabricated from protein polymers and polysaccharides. These materials can be used to improve human life through novel drug delivery, tissue regeneration, and biosensing technologies. The immediate goal of this review is to establish fabrication methods for protein and polysaccharide-based materials that are biocompatible and feature modular electrical properties. Ideally, these materials will be inexpensive to make with salable production strategies, in addition to being both renewable and biocompatible.  相似文献   

18.
Graphene is a two-dimensional sp2 hybridized carbon material that has attracted tremendous attention for its stimuli-responsive applications, owing to its high surface area and excellent electrical, optical, thermal, and mechanical properties. The physicochemical properties of graphene can be tuned by surface functionalization. The biomedical field pays special attention to stimuli-responsive materials due to their responsive abilities under different conditions. Stimuli-responsive materials exhibit great potential in changing their behavior upon exposure to external or internal factors, such as pH, light, electric field, magnetic field, and temperature. Graphene-based materials, particularly graphene oxide (GO), have been widely used in stimuli-responsive applications due to their superior biocompatibility compared to other forms of graphene. GO has been commonly utilized in tissue engineering, bioimaging, biosensing, cancer therapy, and drug delivery. GO-based stimuli-responsive platforms for wound healing applications have not yet been fully explored. This review describes the effects of different stimuli-responsive factors, such as pH, light, temperature, and magnetic and electric fields on GO-based materials and their applications. The wound healing applications of GO-based materials is extensively discussed with cancer therapy and drug delivery.  相似文献   

19.
徐彦芹  刘敏  余丹梅 《化学通报》2023,86(2):142-152
透明质酸(HA)是人体内最为常见的一种粘多糖,具有优良的生物相容性和可降解性,可广泛应用于药物输送、皮肤填充材料、组织工程、药物载体和3D仿生学等方面,是当前生物医用材料领域的研究热点之一。HA具有独特的结构使其显示出特定的物理化学性质,可通过物理或化学方法修饰,赋予其新功能和新应用。本文从HA的分子结构出发,重点综述了HA的官能团羧基、羟基和乙酰胺基的化学改性和物理改性,主要包括羧基的酰胺化反应和酯化反应,羟基与环氧化物的开环反应、与有机硫化物的反应、酯化反应、与卤化物的反应和氧化反应,以及HA脱乙酰基反应;介绍了HA在生物医用材料领域的应用,并对其前景进行展望。  相似文献   

20.
Plasma processes are largely employed in the biomedical field for different kind of materials. In particular, in tissue engineering, biomaterials need to be totally integrated with biological systems in order to be employed as substitutes of artificial prostheses. Since most materials do not allow a correct integration with the biological environment, plasma processes have been demonstrated to be very versatile in altering the material surface properties in order to improve the biocompatibility of materials. The challenge is to plasma modify 3D scaffolds in order to be used for in vivo regeneration of human tissues. The correct 3D biointegration inside living tissues is the crucial objective, towards which many aspects are directed, from the material engineering to its surface modification and affinity with the biological environment. In this paper, the advances in low pressure plasma processes, applied to both 2D rigid substrates and 3D porous structures, are discussed. Further an in vivo experiment in ovine animals using plasma processed 3D scaffolds is illustrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号