首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 31 毫秒
1.
利用角分辨紫外光电子能谱对低温下(160 K)乙炔(C_2H_2)气体在Ru(10■0)表面的吸附进行了研究.实验结果表明:乙炔的C-C轴并不平行于衬底表面, C-C轴在<0001>晶向和表面法线组成的平面内有一定的倾斜.与气相乙炔分子不同,在Ru(10■0)表面吸附的乙炔分子的C-H轴不是沿C-C轴向.  相似文献   

2.
乙烯在Ru(1010)表面价带电子特性研究   总被引:1,自引:0,他引:1  
在200K以下乙烯(C2H4)可以在Ru(1010)表面上以分子状态稳定吸附,200K以上乙烯发生了脱氢分解反应生成乙炔(C2H2).乙烯分解生成乙炔后,σCC和σCH分子轨道能级向高结合能方向分别移动了0.5和1.1 eV.偏振角分辨紫外光电子谱(ARUPS)结果表明:在Ru(1010)表面上,乙烯和脱氢反应后生成的乙炔分子的C-C键轴都不平行于表面,而是沿表面(0001)晶向倾斜.  相似文献   

3.
丙酸水相加氢反应中Ru负载量对C-C键断裂的影响   总被引:1,自引:1,他引:0  
考察了(1.0、4.0、6.0 wt.%)Ru/ZrO2催化剂的丙酸水相加氢性能。采用N2物理吸附、CO脉冲化学吸附、H2程序升温还原(H2-TPR)、CO和丙酸吸附傅里叶变换红外光谱(FTIR)研究了Ru/ZrO2催化剂的物理化学性质。CO-FTIR表明,Ru负载量增加,催化剂表面Ru粒子的富电子程度增加,更接近金属Ru的本征特性。丙酸FTIR表明,丙酸分子在Ru/ZrO2催化剂表面经解离吸附主要形成丙酰基和丙酸盐物种。随Ru含量增加,丙酰基更容易发生脱羰反应,导致C-C键断裂。  相似文献   

4.
在200 K以下己烯(C6H12)可以在Ru()表面上以分子状态稳定吸附.偏振角分辨紫外光电子谱(ARUPS)结果表明,己烯分子在垂直于衬底表面并沿衬底表面<>晶向的平面内,己烯分子的轴向沿<>晶向倾斜.随着衬底温度的提高,到200 K以上,己烯分解生成新的碳氢化合物.己烯分解后,πCH分子轨道能级向高结合能方向移动了0.2 eV,同时己烯中C的1s能级向低结合能方向移动了 0.3 eV.  相似文献   

5.
采用第一性原理方法,通过计算表面能确定Mg3N2(011)为最稳定的吸附表面,分别研究了H2分子在Mg3N2(011)三种终止表面的吸附性质.研究发现H2分子平行表面放置更有利于吸附,表面能最低的终止表面Model Ⅱ上吸附H2分子最稳定,主要存在三种化学吸附方式:第一种吸附方式,H2分子解离成2个H原子分别吸附在N原子上形成双NH基,这是最佳吸附方式;此时H2分子与Mg3N2表面间主要是H原子的1s轨道和N原子的2s、2p轨道发生作用,N-H之间为典型的共价键.第二种吸附方式中H2分子部分解离,两个H原子吸附在同一个N原子上形成NH2基.第三种吸附方式中H2分子解离成两个H原子,一个H原子和表面N原子作用形成NH基,另一个H原子和表面Mg原子作用形成MgH结构.三种吸附方式不存在竞争关系,形成双NH基的吸附方式反应能垒最低,最容易发生.除此之外H2还能以分子的形式吸附在晶体表面,形成物理吸附.  相似文献   

6.
利用电化学衰减全反射原位傅里叶变换红外光谱与微分电化学质谱联用技术,在流动电解池环境以及恒电位条件下研究了Pt电极和Pt电极通过表面电沉积Ru形成的PtRu电极(PtxRuy)上发生的甲醇氧化反应(反应电解质溶液为0.1 mol/L HClO4+0.5 mol/L MeOH). 在0.3-0.6 V(参比电极为可逆氢参比)实验用到的所有电极上,CO是唯一能从红外光谱观察到的与甲醇相关的表面吸附物;在Pt0.56Ru0.44电极上可以观察到CO吸附在Ru原子形成的岛上和CO线式吸附在Pt电极表面红外波段,而其他电极上只能观察到Pt表面上线式吸附的CO;甲醇氧化活性按Pt0.73Ru0.27〉Pt0.56Ru0.44〉Pt0.83Ru0.17〉Pt的顺序递减;在0.5V时,甲醇在Pt0.73Ru0.27电极上的氧化反应的CO2电流效率达到了50%.  相似文献   

7.
采用第一性原理方法研究了乙炔分子在Ge(001)表面的吸附反应.通过系统考察0.5和1.0ML覆盖度时形成di-σ和end-bridge构型的反应路径,研究在表面形成di-σ和paired-end-bridge构型的反应几率.除了表面反应以外,本文还涉及了亚表层Ge原子参与的吸附反应,乙炔在亚表层原子上吸附形成的亚稳态结构sub-di-σ,是形成end-bridge结构的第二条途径,此反应机理对于表面吸附结构的形成起重要的作用.与乙炔分子不同的是,表面以下原子参与时乙烯分子的吸附反应为吸热反应.综合热力学和动力学的分析表明,paired-end-bridge构型是乙炔分子吸附的主要构型,此结论解释了乙炔分子在Ge(001)表面吸附构型的实验结果.对于乙烯和乙炔两分子在Ge(001)表面吸附的分析比较揭示了导致两者之间差异的原因.  相似文献   

8.
考察了(1.0%、4.0%、6.0%)Ru/ZrO2催化剂的丙酸水相加氢性能.采用N2物理吸附、CO脉冲化学吸附、H2程序升温还原(H2-TPR)、CO和丙酸吸附傅里叶变换红外光谱(FTIR)研究了Ru/ZrO2催化剂的物理化学性质.COFTIR表明,Ru负载量增加,催化剂表面Ru粒子的富电子程度增加,更接近金属Ru的本征特性.丙酸FTIR表明,丙酸分子在Ru/ZrO2催化剂表面经解离吸附主要形成丙酰基和丙酸盐物种.随Ru含量增加,丙酰基更容易发生脱羰反应,导致C—C键断裂.  相似文献   

9.
基于密度泛函理论的CO2氧化含氮焦炭的机理研究   总被引:1,自引:0,他引:1  
本研究基于密度泛函理论,选取简化的含吡咯氮(N-5)或吡啶氮(N-6)焦炭模型,在分子水平上对CO2氧化含氮焦炭的异相反应机理进行研究。结构优化采用B3LYP-D3/6-31G(d)方法,单点能计算采用B3LYP-D3/def2-TZVP方法。计算结果表明,CO2氧化含氮焦炭过程分为CO2吸附、CO脱附和NO脱附三个阶段。CO2异相氧化含吡咯氮焦炭的反应中,CO2分子倾向于以C-O-down模式(N-O结合、C-C结合)吸附形成含氮和氧的五元杂环结构。然后五元环中原CO2分子的C-O键断裂形成表面羰基和表面氮氧结构,分别解吸附出CO和NO。该反应吸热401.2 kJ/mol,决速步能垒为197.6 kJ/mol。CO2异相氧化含吡啶氮焦炭的反应中,CO2分子以C-O-down和C-C结合、C-O结合模式吸附后倾向于先形成含氮和氧的六元杂环,再发生CO和NO分子的脱附。该反应吸收598.6 kJ/mol的热量,决速...  相似文献   

10.
徐荫晟  朱天蔚 《催化学报》1984,5(2):195-199
分子轨道理论在催化中的应用愈来愈受到重视.对在金属原子簇上分子的吸附进行过不少半经验的量化计算,但对在担体催化剂上反应气体的吸附及所进行的反应用量子化学处理尚不多见.本文通过在Pt/SiO_2,Ru/SiO_2上CO的吸附、H和CO的共吸附以及中间生成物—CH_2,—CH_3,—CH_2—CH_3在催化剂表面健合的EHMO计算,结合现在流行的CO+H_2生成烷烃的机理,对Ru/SiO_2上生成CH_4的活性高于Pt/SiO_2,Pt/  相似文献   

11.
为使不对称Ru-Fe化合物能在表面上自组装形成单分子膜,对trans-RuCl(dppm)2(C≡CFc)[Fc=C5H4FeC5H5,dppm=(C6H5)2PCH2P(C6H5)2](1)进行修饰,得到Ru(dppm)2(C≡CFc)(C≡CPhOCH3)(2),[Ru(dppm)2(C≡CFc)(N≡CCH2CH2NH2)][PF6](3)和[Ru(dppm)2(C≡CFc)(N≡CCH2CH2NHC(O)·(CH2)10SH)][PF6](4),并详细研究了该系列化合物的电化学性质.循环伏安结果显示出Ru周围配体得失电子能力的差别,直接影响了Ru中心的氧化-还原性,但这种影响并没有通过共轭的炔键传递到二茂铁中的Fe中心.化合物4可以在Au表面上自组装形成稳定、有序的单分子膜.还利用循环伏安法研究了单分子膜的形成过程及其表面覆盖率.  相似文献   

12.
Hydrogenolysis reactions of so-called lignin model dimers using a Ru-xantphos catalyst are presented (xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene). For example, of some nine models studied, the alcohol, 2-(2-methoxyphenoxy)-1-phenylethanol (), with 5 mol% Ru(H)(2)(CO)(PPh(3))(xantphos) () in toluene-d(8) at 135 °C for 20 h under N(2), gives in ~95% yield the C-O cleavage hydrogenolysis products, acetophenone () and guaiacol (), and a small amount (<5%) of the ketone, 2-(2-methoxyphenoxy)-1-phenylethanone (), as observed by (1)H NMR spectroscopy. The in situ Ru(H)(2)(CO)(PPh(3))(3)/xantphos system gives similar findings, confirming a recent report (J. M. Nichols et al., J. Am. Chem. Soc., 2010, 132, 12554). The active catalyst is formulated 'for convenience' as 'Ru(CO)(xantphos)'. The hydrogenolysis mechanism proceeds by initial dehydrogenation to give the ketone , which then undergoes hydrogenolysis of the C-O bond to give and . Hydrogenolysis of to and also occurs using the Ru catalyst under 1 atm H(2); in contrast, use of 3-hydroxy-2-(2-methoxyphenoxy)-1-phenyl-1-propanone (), for example, where the CH(2) of has been changed to CHCH(2)OH, gives a low yield (≤15%) of hydrogenolysis products. Similarly, the diol substrate, 2-(2-methoxyphenoxy)-1-phenyl-1,3-propanediol (), gives low yields of hydrogenolysis products. These low yields are due to formation of the catalytically inactive complexes Ru(CO)(xantphos)[C(O)C(OC(6)H(4)OMe)[double bond, length as m-dash]C(Ph)O] () and/or Ru(CO)(xantphos)[C(O)CH[double bond, length as m-dash]C(Ph)O] (), where the organic fragments result from dehydrogenation of CH(2)OH moieties in and . Trace amounts of Ru(CO)(xantphos)(OC(6)H(4)O), a catecholate complex, are isolated from the reaction of with . Improved syntheses of and lignin models are also presented.  相似文献   

13.
First‐principles calculations are carried out to examine the adsorption of acetylene over the Pd (111) surface. A hydrogen adsorption system is initially investigated to confirm the reliability of the selected calculation method. Adsorption energies, Mulliken‐populations, overlap populations, charge density, and projected density of states (PDOS) are then calculated in the optimised acetylene adsorption system. Results show that C2H2 molecule tends to adsorb through the threefold parallel‐bridge configuration that is computed to be the most stable. In this structure, the distance of the C? H bond is calculated to be 1.09 Å, and the C‐C‐H bond angle is 128°. The distance of the C? C bond in acetylene is 1.36 Å, increasing from 1.21 Å in the gas phase. Moreover, the C? C bond overlap population decreases from 1.98 to 1.38, revealing that the carbon configuration in C2H2 rehybridises from sp to sp2 and beyond. The obtained results are compared with available experimental studies on acetylene hydrogenation on single‐metal surfaces. The PDOS study indicates that a carbonaceous layer may generate on the metal surface during acetylene adsorption. The carbonaceous layer can affect the adsorption and reaction of acetylene, thereby inactivating the metal surface. Our experiments also show that Pd exhibits high catalytic activity.  相似文献   

14.
The ethylene(C2H4)absorbs in molecular state on Ru (1010) surface stably below 200K. The dehydrogenated of ethylene occurs at 200K. The main product of the dehydrogenation of the absorbed ethylene is the acetylene (C2H2). After the dehydrogenation of the absorbed ethylene, the binding energies ofσCCandσCHbond have an increase of 0.5 and 1.1eV respectively. The C-C bonds of both ethylene and acetylene tilt in <0001> azimuth.  相似文献   

15.
The synthesis of Ru(C2H4)(CO)2(dtbpe) (dtbpe = tBu2PC2H4PtBu2), then green [Ru(CO)2(dtbpe)]n is described. In solution, n = 1, while in the solid state, n = 2; the dimer has two carbonyl bridges. DFTPW91, MP2, and CCSD(T) calculations show that the potential energy surface for bending one carbonyl out of the RuP2C(O) plane is essentially flat. Ru(CO)2(dtbpe) reacts rapidly in benzene solution to oxidatively add the H-E bond of H2, HCl, HCCR (R = H, Ph), [HOEt2]BF4, and HSiEt3. The H-C bond of C6HF5 oxidatively adds at 80 degrees C. CO adds, as does the C=C bond of H2C=CHX (X = H, F, Me). The following do not add: N2, THF, acetone, H3COH, and H2O.  相似文献   

16.
Laser-ablated ruthenium atoms undergo reaction with acetylene during condensation in excess neon and argon matrices to form a metallacycle complex, insertion into the C-H bond, and rearrangement to the vinylidene complex. The subject molecules were identified by (13)C(2)H(2) and C(2)D(2), isotopic substitutions and density functional theory (DFT) frequency calculations. The HRuCCH molecule is described by Ru-H, CH, and CC stretching modes and CCH deformation modes. A very strong CC double bond stretching, weak CH stretching, and CCH deformation frequencies were observed for the Ru═C═CH(2) complex. The metallacycle Ru-η(2)-(C(2)H(2)) is characterized through CC double bond stretching, CH stretching and CCH deformation modes. The reaction mechanism for formation of the Ru═C═CH(2) complex was investigated by B3LYP internal reaction coordinate calculations, and the hydrido-alkyny complex is the rate-determining step. The delocalized three-center-four-electron π bond using the Ru 4d(xz) electron pair contributes to the C-C π* orbital and provides stabilization energy (ΔE((2)), second-order perturbation) for the vinylidene Ru═C═CH(2) complex.  相似文献   

17.
The catalytic cycle for the Murai reaction at room temperature between ethylene and acetophenone catalyzed by [Ru(H)(2) (H(2) )(2) (PMe(3) )(2) ] has been studied computationally at the B3PW91 level. The active species is the ruthenium dihydride complex [Ru(H)(2) (PMe(3) )(2) ]. Coordination of the ketone group to Ru induces very easy C?H bond cleavage. Coordination of ethylene after ketone de-coordination, followed by ethylene insertion into a Ru?H bond, creates the Ru?ethyl bond. Isomerization of the complex to a Ru(IV) intermediate creates the geometry adapted to C?C bond formation. Re-coordination of the ketone before the C?C coupling lowers the energy of the corresponding TS. The highest point on the potential energy surface (PES) is the TS for the isomerization to the Ru(IV) intermediate, which prepares the catalyst geometry for the C?C coupling step. Inclusion of dispersion corrections significantly lowers the height of the overall activation barrier. The actual bond cleavage and bond forming processes are associated to low activation barriers because of the presence of hydrogen atoms around the Ru center. They act as redox buffers through formation and breaking of H?H bonds in the coordination sphere. This flexibility allows optimal repartition of the various ligands according to the change in stereoelectronic demands along the catalytic cycle.  相似文献   

18.
Novel organosilylated tetrathiafulvalenes (TTFs) possessing Si-H or Si-Si bonds have been synthesised. The crystal structures of several derivatives have been determined by X-ray diffraction, including that of dimeric (Si(2)Me(4))(TTF)(2) () incorporating a diatomic SiMe(2)-SiMe(2) linker. Cyclic voltammetry measurements in all cases show two oxidation waves. DFT calculations were performed to rationalize the absence of an electronic communication between the two TTF moieties of through the disilanyl spacer. The reactivity of the Si-H bond has been exploited to prepare the dinuclear complex [{Ru(CO)(4)}(2){mu-(Me(2)Si)(4)TTF}] (), starting from Ru(3)(CO)(12) and TTF(SiMe(2)H)(4) (). Treatment of with 2 equiv. of PPh(3) or dppm results in selective substitution of a CO ligand trans to a SiMe(2) group to afford mer-[{Ru(PPh(3))(CO)(3)}(2){mu-(Me(2)Si)(4)TTF}] () and mer-[{Ru(CO)(3)}(2)(eta(1)-dppm){mu-(Me(2)Si)(4)TTF}] (). Attempts to transform the Si-H bonds of some TTF(SiMe(2)H)(n) (n = 1, 2) into Si-O functions using stoichiometric amounts of water in the presence of tris(dibenzylideneacetone)dipalladium(0) were unsuccessful. Quantitative cleavage of the C(TTF)-Si bond was observed instead of formation of TTF-based-siloxanes. Essays of catalytic bis-silylation of phenylacetylene with and TTF(SiMe(2)-SiMe(3)) () in the presence of Pd(OAc)(2)/1,1,3,3-tetramethylbutylisocyanide failed. Again, cleavage of the C(TTF)-Si bond was noticed.  相似文献   

19.
A complete catalytic cycle for the cyclotrimerization of acetylene with the CpRuCl fragment has been proposed and discussed based on DFT/B3LYP calculations, which revealed a couple of uncommon intermediates. The first is a metallacyclopentatriene complex RuCp(Cl)(C(4)H(4)) (B), generated through oxidative coupling of two alkyne ligands. It adds another alkyne in eta(2) fashion to give an alkyne complex (C). No less than three successive intermediates could be located for the subsequent arene formation. The first, an unusual five- and four-membered bicyclic ring system (D), rearranges to a very unsymmetrical metallaheptatetraene complex (E), which in turn provides CpRuCl(eta(2)-C(6)H(6)) (F) via a reductive elimination step. The asymmetry of E, including Cp ring slippage, removes the symmetry-forbidden character from this final step. Completion of the cycle is achieved by an exothermic displacement (21.4 kcal mol(-)(1)) of the arene by two acetylene molecules regenerating A. In addition to acetylene, the reaction of B with ethylene and carbon disulfide, the latter taken as a model for a molecule lacking hydrogen atoms, has also been investigated, and several parallels noted. In the case of the coordinated alkene, facile C-C coupling to the alpha carbon of the metallacycle is feasible due to an agostic assistance, which tends to counterbalance the reduced degree of unsaturation. Carbon disulfide, on the other hand, does not coordinate to ruthenium, but a C=S bond adds instead directly to the Ru=C bond. The final products of the reactions of B with acetylene, ethylene, and carbon disulfide are, respectively, benzene, cyclohexadiene, and thiopyrane-2-thione, the activation energies being lower for acetylene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号