首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The kinetics for the reaction of diazide (4,4′-biphenyl dibenzyl azide) and diyne (dipropargyl bisphenol A) catalyzed by CuBr-PMDETA (N, N, N′, N″, N″-pentamethyldiethylenetriamine) was studied in this paper by means of nuclear magnetic resonance spectra (1H-NMR) and differential scanning calorimetry (DSC). 1H-NMR was carried out to analyze solution polymerizations under different CuBr-PMDETA ratios in DMSO-d6. The results showed that CuBr-PMDETA catalytic system was easy to be oxidation under ambient condition. However, different CuBr-PMDETA ratios influenced the catalytic efficiency and the optimal ratios were found in nitrogen gas. DSC was carried out to analyze bulk polymerizations. The results showed that the apparent activation energy (Eα) calculated by Kissinger's method was 69.2 kJ/mol, which was confirmed by Friedman's method. The two tests indicated that the catalyzed polymerization of diazide and diyne was a second order reaction.  相似文献   

2.
Oligomers and polymers containing triazole units were synthesized by the copper(I)‐catalyzed 1,3‐dipolar cycloaddition step‐growth polymerization of four difunctional azides and alkynes. In a first part, monofunctional benzyl azide was used as a chain terminator for the polyaddition of 1,6‐diazidohexane and α,ω‐bis(O‐propargyl)diethylene glycol, leading to polytriazole oligomers of controlled average degree of polymerization (DPn = 3–20), to perform kinetic studies on low‐viscosity compounds. The monitoring of the step‐growth click polymerization by 1H NMR at 25, 45, and 60 °C allowed the determination of the activation energy of this click chemistry promoted polyaddition process, that is, Ea = 45 ± 5 kJ/mol. The influence of the catalyst content (0.1–5 mol % of Cu(PPh3)3Br according to azide or alkyne functionalities) was also examined for polymerization kinetics performed at 60 °C. In a second part, four high molar mass polytriazoles were synthesized from stoichiometric combinations of diazide and dialkyne monomers above with p‐xylylene diazide and α,ω‐bis(O‐propargyl)bisphenol A. The resulting polymers were characterized by DSC, TGA, SEC, and 1H NMR. Solubility and thermal properties of the resulting polytriazoles were discussed based on the monomers chemical structure and thermal analyses. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5506–5517, 2008  相似文献   

3.
Tris(2,4,6-trimethylphenolate) lanthartide [Ln(OTMP)3] has been prepared and employed for ring-opening polymerization of D,L-lactide (LA) as single-component catalysts. The characteristics, kinetics and mechanism were examined. The polymerization is first-order with respect to monomer and initiator concentration, and the overall activation energy amounts to 62.9 kJ/mol. DSC curve disclosed the random structure of PLA. ^1H NMR spectrum analysis demonstrates that the polymerization of LA proceeded through acyl-oxygen bond cleavage.  相似文献   

4.
Heteroarm H‐shaped terpolymers, (polystyrene)(poly(methyl methacrylate))‐ poly(tert‐butyl acrylate)‐(polystyrene)(poly(methyl methacrylate)), (PS)(PMMA)‐PtBA‐(PMMA)(PS), and, (PS)(PMMA)‐poly(ethylene glycol)(PEG)‐(PMMA)(PS), through click reaction strategy between PS‐PMMA copolymer (as side chains) with an alkyne functional group at the junction point and diazide end‐functionalized PtBA or PEG (as a main chain). PS‐PMMA with alkyne functional group was prepared by sequential living radical polymerizations such as the nitroxide mediated (NMP) and the metal mediated‐living radical polymerization (ATRP) routes. The obtained H‐shaped polymers were characterized by using 1H‐NMR, GPC, DSC, and AFM measurements. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1055–1065, 2007  相似文献   

5.
The polymerization of N‐methyl‐α‐fluoroacrylamide (NMFAm) initiated with dimethyl 2,2′‐azobisisobutyrate (MAIB) in benzene was studied kinetically and with electron spin resonance. The polymerization proceeded heterogeneously with the highly efficient formation of long‐lived poly(NMFAm) radicals. The overall activation energy of the polymerization was 111 kJ/mol. The polymerization rate (Rp) at 50 °C is given by Rp = k[MAIB]0.75±0.05 [NMFAm]0.44±0.05. The concentration of the long‐lived polymer radical increased linearly with time. The formation rate (Rp?) of the long‐lived polymer radical at 50 °C is expressed by Rp? = k[MAIB]1.0±0.1 [NMFAm]0±0.1. The overall activation energy of the long‐lived radical formation was 128 kJ/mol, which agreed with the energy of initiation (129 kJ/mol), which was separately estimated. A comparison of Rp? with the initiation rate led to the conclusion that 1‐methoxycarbonyl‐1‐methylethyl radicals (primary radicals from MAIB), escaping from the solvent cage, were quantitatively converted into the long‐lived poly(NMFAm) radicals. Thus, this polymerization involves completely unimolecular termination due to polymer radical occlusion. 1H NMR‐determined tacticities of resulting poly(NMFAm) were estimated to be rr = 0.34, mr = 0.48, and mm = 0.18. The copolymerization of NMFAm(M1) and St(M2) with MAIB at 50 °C in benzene gave monomer reactivity ratios of r1 = 0.61 and r2 = 1.79. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2196–2205, 2001  相似文献   

6.
The free-radical bulk polymerization of 2,2-dinitro-1-butyl-acrylate (DNBA) in the presence of 2,2′-azobisisobutyronitrile (AIBN) as the initiator was investigated by DSC in the non-isothermal mode. Kissinger and Ozawa methods were applied to determine the activation energy (E a) and the reaction order of free-radical polymerization. The results showed that the temperature of exothermic polymerization peaks increased with increasing the heating rate. The reaction order of non-isothermal polymerization of DNBA in the presence of AIBN is approximately 1. The average activation energy (92.91±1.88 kJ mol −1) obtained was smaller slightly than the value of E a=96.82 kJ mol−1 found with the Barrett method.  相似文献   

7.
Main chain polymeric benzophenone photoinitiator (PBP) was synthesized by using “Thiol‐ene Click Chemistry” and characterized with 1H NMR, FTIR, UV, and phosphorescence spectroscopies. PBP as a polymeric photoinitiator presented excellent absorption properties (ε294 = 28,300 mol?1L?1cm?1) compared to the molecular initiator BP (ε252 = 16,600 mol?1L?1cm?1). The triplet energy of PBP was obtained from the phosphorescence measurement in 2‐methyl tetrahydrofurane at 77 K as 298.3 kJ/mol and according to phosphorescence lifetime, the lowest triplet state of PBP has an n‐π* nature. Triplet–triplet absorption spectrum of PBP at 550 nm following laser excitation (355 nm) were recorded and triplet lifetime of PBP was found as 250 ns. The photoinitiation efficiency of PBP was determined for the polymerization of Hexanedioldiacrylate (HDDA) with PBP and BP in the presence of a coinitiator namely, N‐methyldiethanolamine (MDEA) by Photo‐DSC. The initiation efficiency of PBP for polymerization of HDDA is much higher than for the formulation consisting of BP. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

8.
Novel polyfunctional macroinitiators for atom transfer radical polymerization (ATRP) were obtained via esterification of hyperbranched polyglycerol (PG) (Mn = 4 770 g/mol, Mw/Mn = 1.5) with 2‐bromoisobutyryl bromide. Such macroinitiators were used in the presence of CuBr/pentamethyldiethylenetriamine (PMDETA) to initiate methyl acrylate (MA) polymerization, resulting in multi‐arm block copolymers with polyether core and 45–55 PMA arms. PMA arm length was controlled via monomer/initiator ratio and conversion (< 35%). Polymers were characterized by 1H NMR, 13C NMR, SEC, membrane osmometry and DSC.  相似文献   

9.
A series of imino‐indolate half‐titanocene chlorides, Cp′Ti(L)Cl2 ( C1 – C7 : Cp′ = C5H5, MeC5H4, C5Me5, L = imino‐indolate ligand), were synthesized by the reaction of Cp′TiCl3 with sodium imino‐indolates. All complexes were characterized by elemental analysis, 1H and 13C NMR spectroscopy. Moreover, the molecular structures of two representative complexes C4 and C6 were confirmed by single crystal X‐ray diffraction analysis. On activation with methylaluminoxane (MAO), these complexes showed good catalytic activities for ethylene polymerization (up to 7.68 × 106 g/mol(Ti)·h) and ethylene/1‐hexene copolymerization (up to 8.32 × 106 g/mol(Ti)·h), producing polyolefins with high molecular weights (for polyethylene up to 1808 kg/mol, and for poly(ethylen‐co‐1‐hexene) up to 3290 kg/mol). Half‐titanocenes containing ligands with alkyl substituents showed higher catalytic activities, whereas the half‐titanocenes bearing methyl substituents on the cyclopentadienyl groups showed lower productivities, but produced polymers with higher molecular weights. Moreover, the copolymerization of ethylene and methyl 10‐undecenoate was demonstrated using the C1 /MAO catalytic system. The functionalized polyolefins obtained contained about 1 mol % of methyl 10‐undecenoate units and were fully characterized by several techniques such as FT‐IR, 1H NMR, 13C NMR, DSC, TGA and GPC analyses. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 357–372, 2009  相似文献   

10.
Through addition reaction of Schiff‐base terephthalylidene‐bis‐(p‐aminophenol) ( DP‐1 ) and diethyl phosphite (DEP), a novel phosphorus‐modified epoxy, 4,4'‐diglycidyl‐(terephthalylidene‐bis‐(p‐aminophenol))diphosphonate ether ( EP‐2 ), was obtained. An modification reaction between EP‐2 and DP‐1 resulted in an epoxy compound, EP‐3 , possessing both phosphonate groups and C?N imine groups. The structure of EP‐2 was characterized by Fourier transform infrared (FTIR), elemental analysis (EA), 1H, 13C, and 31P NMR analyses. The thermal properties of phosphorus‐modified epoxies cured with 4,4'‐diaminodiphenylmethane (MDA) and 4,4'‐diaminodiphenyl ether (DDE) were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The activation energies of dynamic thermal degradation (Ed) were calculated using Kissinger and Ozawa's methods. The thermal degradation mechanism was characterized using thermogravimetric analysis/infrared spectrometry (TG‐IR). In addition, the flame retardancy of phosphorus‐modified epoxy thermosets was evaluated using limiting oxygen index (LOI) and UL‐94 vertical test methods. Via an ingenious design, phosphonate groups were successfully introduced into the backbone of the epoxies; the flame retardancy of phosphorus‐modified epoxy thermosets was distinctly improved. Due to incorporation of C?N imine group, the phosphorus‐modified epoxy thermosets exhibited high thermal stabilities; the values of glass‐transition temperatures (Tgs) were about 201–210°C, the values of Ed were about 220–490 kJ/mol and char yields at 700°C were 49–53% in nitrogen and 45–50% in air. These results showed an improvement in the thermal properties of phosphorus‐modified epoxy by the incorporation of C?N imine groups. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
A new energetic plasticizer, acyl-terminated glycidyl azide polymer (GAP), was synthesized through the reaction between 2,4,6-trinitrobenzoyl (TNB) chloride and GAP. The TNB-GAP structure was confirmed by FT-IR, UV-vis, 1H NMR, and 13C NMR. The glass transition temperature (T g ) of TNB-GAP was evaluated by differential scanning calorimetry (DSC), and the thermal stability of TNB-GAP was tested by thermogravimetric analysis (TGA). DSC traces showed that TNB-GAP had a T g of ?46.01°C. TGA curves showed that the thermo-oxidative degradation of TNB-GAP in air was a two-step reaction, and the percentage of degraded TNB-GAP nearly reached 100% at 650°C. Exothermic decomposition reaction kinetic parameters of TNB-GAP were also studied using the non-isothermal DSC method. Results indicated that the values of apparent activation energy of TNB-GAP were 80.16 and 162.92 kJ/mol, and the values of the pre-exponential constant were 1.75 × 1010 and 1.22 × 1016.  相似文献   

12.
Poly(vinyl alcohol)‐graft‐poly(1,4‐dioxan‐2‐one) (PVA‐g‐PPDO) with designed molecular structure was synthesized by a solid‐state polymerization. The solid‐state copolymerization was preceded by a graft copolymerization of PDO initiated with PVA as a multifunctional initiator, and Sn (Oct)2 as a coininitiator/catalyst in a homogeneous molten state. The polymerization temperature was then decreased and the copolymerization was carried out in a solid state. The products prepared by solid‐state polymerization were characterized by 1H NMR and DSC, and were compared with those synthesized in the homogeneous molten state. The degree of polymerization (Dp), degree of substitution (Ds), yield and the average molecular weight of the graft copolymer with different molecular structure were calculated from the 1H NMR spectra. The results show that the crystallization process during the solid‐state polymerization may suppress the undesirable inter‐ or intramolecular side reactions, then resulting in a controlled molecular structure of PVA‐g‐PPDO. The results of DSC measurement show that the molecular structures determine the thermal behavior of the PVA‐g‐PPDO. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3083–3091, 2006  相似文献   

13.
The anionic polymerization of (E)‐1,3‐pentadiene (EP) and (Z)‐1,3‐pentadiene (ZP) together with mixture of the E/Z isomers are investigated, respectively. The kinetic analysis shows that the activation energy for EP (86.17 kJ/mol) is much higher than that for ZP (59.03 kJ/mol). GPC shows that it is the EP rather than the ZP isomer that undergoes anionic living polymerization affording quantitative products of the polymers with well‐controlled molecular weights and narrow molecular weight distributions (1.05 ≤? ≤ 1.09). In addition, THF as polar additive has proved its validity to reduce the molecular weight distribution of poly(ZP) from 1.38 to as low as 1.19. The microstructure and sequence distributions of polypentadiene are characterized by 1H NMR and quantitative 13C NMR. Finally, the distinctive reaction activity of two isomers can be elucidated by two different mechanisms which involve the presence of four forms of zwitterions for EP and the typical [1,5]‐sigmatropic hydrogen‐shift phenomenon for ZP. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2291–2301  相似文献   

14.
Sulfonated polytriazoles have drawn a great attention as high performance polymers and their good film forming ability. In the present study, a phosphorus containing new diazide monomer namely, bis-[4-(4′-aminophenoxy)phenyl]phenylphosphine was synthesized and accordingly, a series of phosphorus containing sulfonated polytriazoles (PTPBSH-XX) was synthesized by reacting equimolar amount of this diazide monomer (PAZ) in combination with another sulfonated diazide monomer (DSAZ) and a terminal bis-alkyne (BPALK) by the Cu (I) catalyzed azide–alkyne click polymerization. The polymers were characterized by nuclear magnetic resonance (1H, 13C, 31P NMR) and Fourier transform infrared spectroscopic techniques. The sulfonic acid content of the copolymers also determined from the different integral values obtained from the 1H NMR signals. The small-angle X-ray scattering results unfolded the well-separated dispersion of the hydrophilic and hydrophobic domains of the polymers. As a whole, the copolymer membranes displayed sufficient thermal, mechanical, and oxidative stabilities high with high proton conductivity and low water uptake that are essential for proton exchange membrane applications. The copolymers exhibited oxidative stability in the range of 15–24 h and had proton conductivity values were found as high as 38–110 mS cm−1 at 80 °C in completely hydrated condition. Among the all copolytriazoles, PTPBSH-90 (BPALK:DSAZ:PAZ = 100:90:10) having IECW = 2.44 mequiv g−1, showed proton conductivity as high as 119 mS cm−1 at 90 °C with an activation energy of 10.40 kJ mol−1 for the proton conduction. © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 263–279  相似文献   

15.
The kinetics of the ring‐opening polymerization (ROP) of ε‐caprolactone (ε‐CL) initiated by soluble aluminum tri‐sec‐butoxide (Al(OsecBu)3) has been investigated by the differential scanning calorimetry (DSC). The DSC polymerizations were carried out under nonisothermal and isothermal conditions to obtain three‐arms poly(ε‐caprolactone) (PCL). From nonisothermal DSC, the polymerization rate (dα/dt) increased with increasing heating rates. The values of Ea were determined from Kissinger ( kJ mol?1), Friedman (31.0 – 63.0 kJ mol?1), and Starink (64.0 – 71.0 kJ mol?1) methods. From isothermal DSC, the dα/dt and the apparent rate constant (kapp) increased with increasing polymerization temperatures. The ROP of ε‐CL initiated by Al(OsecBu)3 occurred via the coordination insertion mechanism. The number average molecular weight () and percent yield of the synthesized PCL was enhanced by increasing polymerization temperature. The synthesized PCL with of 2.4 × 104 was obtained using a molar ratio of monomer to Al‐O active center ([M]/[Al‐O]) of 400 at 150ºC for 24 h. Al(OsecBu)3 is one of the promising initiator due to its solubility, low transesterification reaction, and high efficiency in ε‐CL polymerization.  相似文献   

16.
Model copolymers of poly(butadiene) (PB) and poly(dimethylsiloxane) (PDMS), PB‐b‐PDMS‐b‐PB, were synthesized by sequential anionic polymerization (high vacuum techniques) of 1,3‐butadiene and hexamethylciclotrisiloxane (D3) on sec‐BuLi followed by chlorosilane‐coupling chemistry. The synthesized copolymers were characterized by nuclear magnetic resonance (1H NMR), size‐exclusion chromatography (SEC), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). SEC and 1H NMR results showed low polydispersity indexes (Mw/Mn) and variable siloxane compositions, whereas DSC and TGA experiments indicated that the thermal stability of the triblock copolymers depends on the PDMS composition. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2726–2733, 2007  相似文献   

17.
Ring‐opening polymerization of 1,4‐dioxan‐2‐one in bulk was initiated by three titanium alkoxides, titanium dichlorodiisopropoxide (TiCl2(OiPr)2), titanium chlorotriisopropoxide (TiCl(OiPr)3), and titanium tetraisopropoxide (Ti(OiPr)4). The results indicate that the polymerization rate increased with number of OiPr groups in the initiator. High conversion of monomer (90%) and high molecular weight (11.9 × 104 g/mol) of resulting polymer can be achieved in only 5 min at 60 °C with Ti(OiPr)4 as an initiator. Analysis on nuclear magnetic resonance (NMR) spectra suggests the initiating sites for TiCl2(OiPr)2, TiCl(OiPr)3, and Ti(OiPr)4 to be 1.9, 2.6, and 3.8, respectively. Coordination‐insertion mechanism for the polymerization via cleavage of the acyl–oxygen bonds of the monomer was proved by NMR investigation. Kinetic studies indicate that polymerization initiated by Ti(OiPr)4 followed a first‐order kinetics, with an apparent activation energy of 33.7 kJ/mol. It is noteworthy that this value is significantly lower than earlier reported values with other catalysts, namely La(OiPr)3 (50.5 kJ/mol) and Sn(Oct)2 (71.8 kJ/mol), which makes it an attractive catalyst for reactive extrusion polymerization. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

18.
A new kind of soluble structure‐ordered ladder‐like polysilsesquioxane with reactive side‐chain 2‐(4‐chloromethyl phenyl) ethyl groups ( L ) was first synthesized by stepwise coupling polymerization. The monomer, 2‐(4‐chloromethyl phenyl) ethyltrichlorosilane ( M ), was synthesized successfully by hydrosilylation reaction with dicyclopentadienylplatinum(II) chloride (Cp2PtCl2) ­catalyst. Monomer and polymer structures were characterized by FT‐IR, 1H‐NMR, 13C‐NMR, 29Si‐NMR, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), vapor pressure osmometry (VPO) and X‐ray diffraction (XRD). This novel reactive ladder‐like polymer has promise potential applications as initiator for atom transfer radical polymerization, and as precursor for a variety of advanced functional polymers. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
The epoxy resin diglycidyl ether of Bisphenol A (BADGE n = 0) has been cured with a new synthesized hardener (2‐adamantylethanamine) and the crosslinking reaction was characterized by DSC. Values of 413.3 J/g and 95°C have been obtained for the enthalpy of the reaction and the glass transition temperature, respectively. The experimental results obey Kamal's model over all conversion range of temperatures (70°C‐100°C). The activation energies of the mechanisms involved in the curing reaction have been determined for both the autocatalytic and the n‐order mechanism, the values being 63.3 and 29.8 kJ/mol, respectively. The value for Tg is 23°C higher than the one for (BADGE n = 0)/amantadine, while the activation energy for the n‐order mechanism is around 13 kJ/mol lower. This is consistent with a higher steric effect of the adamantyl group in the second hardener since it will hinder the opening the oxirane ring by the nitrogen atom of the amino group. As the polymerization reaction progress, this effect will disappear as the distance adamantyl‐oxirane increase when new oxirane groups react with the hydroxyl groups (autocatalyzed reaction). Consequently, by selecting the appropriate cross‐linking agent, it is possible to simultaneously increase Tg while reducing theactivation energy, two effects which may be desirable for some industrial applications of the material.  相似文献   

20.
Polymerization by cycloaddition between aldothioketene and its alkynethiol tautomer (derived in situ from a diyne) leading to the formation of dithiafulvene unit‐linked polymers has been studied. Two aromatic diynes [bis(4‐ethynyldiphenyl)methane ( 1a ) and 4,4′‐diethynyldiphenyl ether) ( 1b )] were used as starting materials with the aim of obtaining non‐π‐conjugated methylene‐ and oxygen‐bridged aromatic poly(dithiafulvene)s. The poly(dithiafulvene) derived from bis(4‐ethynyldiphenyl)methane can be considered as an interesting precursor to a small band‐gap polymer having alternating aromatic and quinonoid moieties. Further, two aliphatic diynes [1,7‐octadiyne ( 3a ) and 1,9‐decadiyne ( 3b )] were subjected to cycloaddition polymerization to obtain aliphatic poly(dithiafulvene)s containing localized electron‐rich dithiafulvene units. The polymers obtained were characterized by IR, 1H NMR, gel permeation chromatography, and cyclic voltammetry. The electron‐donating property of the polymers was evident from the charge‐transfer (CT) complex formation with an electron acceptor 7,7,8,8‐teracyanoquinodimethane. The CT complexes were characterized by IR, 1H NMR, and ultraviolet–visible spectroscopies. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3593–3603, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号