首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
激光超衍射加工机理与研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
张心正  夏峰  许京军 《物理学报》2017,66(14):144207-144207
随着纳米科技和微纳电子器件的发展,制造业对微纳加工技术的要求越来越高.激光加工技术是一种绿色先进制造技术,具有巨大的发展潜力,己广泛应用于不同的制造领域.为实现低成本、高效率、大面积尤其是高精度的激光微纳加工制造,研究和发展激光超衍射加工技术具有十分重要的科学意义和应用价值.本文首先阐述了基于非线性效应的远场激光直写超衍射加工技术的原理与国内外发展状况,包括激光烧蚀加工技术、激光诱导改性加工技术和多光子光聚合加工技术等;然后介绍了几种基于倏逝波的近场激光超衍射加工技术,包括扫描近场光刻技术、表面等离子激元光刻技术等新型超衍射激光近场光刻技术的机理与研究进展;最后对激光超衍射加工中存在的问题及未来发展方向进行了讨论.  相似文献   

2.
Femtosecond laser as a maskless lithography technique is able to fabricate structures far smaller than the diffraction limit to a value within sub-micrometer resolution. We present the femtosecond laser lithography without ablation on the positive photoresist is applied in fabricating T-shaped gate AlGaN/GaN HEMT. The feature sizes of femtosecond laser lithography were determined by the incident laser power, the scan speed of the laser focus, the number of scan times, and the substrate materials. T-shaped gate with the smallest gate length 204?nm could be fabricated by dielectric-defined process using femtosecond laser lithography. The fabricated AlGaN/GaN HEMT with 380?nm T-gate exhibits a maximum drain current density of 500?mA/mm and a maximum peak extrinsic transconductance of 173?mS/mm.  相似文献   

3.
戴岑  巩岩  张昊  李佃蒙  薛金来 《中国光学》2018,11(2):255-264
多层膜极紫外光刻掩模"白板"缺陷是制约下一代光刻技术发展的瓶颈之一,为提高对掩模"白板"上的膜层微结构缺陷的分辨能力,提出了一种微分干涉差共焦显微探测系统方案。基于标量衍射理论,计算了系统横向和轴向分辨率。利用MATLAB建模仿真,在数值孔径为0.65、工作波长为405 nm时,分析比较了微分干涉差共焦显微系统、传统显微系统和共焦显微系统的分辨率。结果表明微分干涉差共焦显微系统具有230 nm的横向分辨率和25 nm轴向台阶高度差的分辨能力(对应划痕等缺陷形式)。此外,仿真和分析了实际应用中探测器尺寸、样品轴向偏移等的影响,模拟分析了膜层微结构缺陷的探测,结果表明本系统可以探测200 nm宽、10 nm高的微结构缺陷,较另外两种系统有更好的探测能力。  相似文献   

4.
We have investigated silicon–germanium (SiGe) line structures employing metallic apertures in combination with Raman spectroscopy to obtain high‐spatial strain resolution below the diffraction limit. The apertures were cut into specifically shaped electrochemically etched tungsten tips, which were adjusted within the Raman laser beam on the sample surface by a tuning fork atomic force microscope. With this setup, line structures on patterned SiGe films with a center‐to‐center distance down to 200 nm were resolved in the Raman scans, evidently indicating a resolution clearly below the far‐field Raman resolution of about 600 nm for the used instrument. This setup allows improved local strain analysis by Raman spectroscopy and shows potential for further near‐field Raman applications. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Stimulated emission depletion (STED) microscopy has become a powerful imaging and localized excitation method, breaking the diffraction barrier for improved spatial resolution in cellular imaging, lithography, etc. Because of specimen‐induced aberrations and scattering distortion, it is a great challenge for STED to maintain consistent lateral resolution deep inside specimens. Here we report on deep imaging STED microscopy using a Gaussian beam for excitation and a hollow Bessel beam for depletion (GB‐STED). The proposed scheme shows an improved imaging depth of up to about 155 μm in a solid agarose sample, 115 μm in polydimethylsiloxane, and 100 μm in a phantom of gray matter in brain tissue with consistent super resolution, while standard STED microscopy shows a significantly reduced lateral resolution at the same imaging depth. The results indicate the excellent imaging penetration capability of GB‐STED, paving the way for deep tissue super‐resolution imaging and three‐dimensional precise laser fabrication.

  相似文献   


6.
The sensitivity of far‐field Raman micro‐spectroscopy was investigated to determine quantitatively the actual thickness of organic thin films. It is shown that the thickness of organic films can be quantitatively determined down to 3 nm with an error margin of 20% and down to 1.5 nm with an error margin of 100%. Raman imaging of thin‐film surfaces with a far‐field optical microscope establishes the distribution of a polymer with a lateral resolution of ~400 nm and the homogeneity of the film. Raman images are presented for spin‐coated thin films of polysulfone (PSU) with average thicknesses between 3 and 50 nm. In films with an average thickness of 43 nm, the variation in thickness was around 5% for PSU. In films with an average thickness of 3 nm for PSU, the detected thickness variation was 100%. Raman imaging was performed in minutes for a surface area of 900 µm2. The results illustrate the ability of far‐field Raman microscopy as a sensitive method to quantitatively determine the thickness of thin films down to the nanometer range. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
We demonstrate sub-diffraction lateral resolution of 28±2 nm in far-field fluorescence microscopy through stimulated emission depletion effected by an amplified laser diode. Measurement of the optical transfer function in the focal plane reveals a 6-fold enlargement of the spatial bandwith over the diffraction limit. The resolution is established by imaging individual fluorescent molecules on a surface. Corresponding to 1/25 of the responsible wavelength, the attained resolution represents a new benchmark in far-field microscopy and underscores the viability of fluorescence nanoscopy with visible light, conventional optics and compact laser systems . PACS 32.50.+d; 42.30.-d; 78.45.+h; 87.57.Ce  相似文献   

8.
Nanoscale ridge apertures provide a highly confined radiation spot with a high transmission efficiency when used in the near field approach. The radiation confinement and enhancement is due to the electric–magnetic field concentrated in the gap between the ridges. This paper reports the experimental demonstration of radiation enhancement using such antenna apertures and lithography of nanometer size structures. The process utilizes a NSOM (near field scanning optical microscopy) probe with a ridge aperture at the tip, and it combines the nonlinear two photon effect from femtosecond laser irradiation to achieve sub-diffraction limit lithography resolution.  相似文献   

9.
激光直写邻近效应的校正   总被引:12,自引:1,他引:11  
邻近效应是限制光刻系统分辨力的一个重要因素,它也限制了激光直写在亚微米和亚半微米光刻中的应用。分析了激光直写邻近效应产生的原因,指出它和电子束直写及投影光刻的区别,提出了一种简便有效的邻近校正方法。实验表明,通过光学邻近校正(OPC),利用微米级激光直写系统,制作出了0.6μm的实用光刻线条  相似文献   

10.
The use of photonic crystal and negative refractive index materials is known to improve the resolution of optical microscopy and lithography devices down to the 80 nm level. Here we demonstrate that utilization of well-known digital image recovery techniques allows us to further improve the resolution of optical microscopy down to the 30 nm level. Our microscope is based on a flat dielectric mirror deposited onto an array of nanoholes in thin gold film. This two-dimensional photonic crystal mirror may have either a positive or negative effective refractive index as perceived by surface plasmon polartions in the visible frequency range. The optical images formed by the mirror are enhanced using simple digital filters. PACS 73.20.Mf; 42.70.Qs; 07.60.Pb  相似文献   

11.
Over the past decade, focused electron beam-induced deposition has become a mature necessary part of the tool box engineers and scientists. This review presents the current state of the art in sub-10 nm focused electron beam deposition and describes the dominant mechanisms that have been found so far for this regime. Several questions regarding patterning at the highest resolution are addressed. What do our findings mean for using sub-10 nm focused electron beam deposition for industrial applications? And which fundamental issues remain to be solved? The overview shows that low-energy secondary electrons dominate the deposition process. As a result, the highest obtainable spatial resolution (averaged over many deposits) is limited by the mean free path of those electrons. Therefore, the only route to improve the resolution beyond the current appears to be using complexes that are sensitive to the high-energy electrons in the incident beam, rather than to the secondaries. Focused electron beam-induced deposition is compared to related techniques. It is on par with resist-based sub-10 nm electron beam lithography, showing similar spatial resolutions at similar electron doses. Regarding ion beam lithography, there are several distinguishing issues. Sub-10 nm writing has yet to be demonstrated for ion deposition, and although the deposition rate is relatively low when writing with electrons, electrons do not induce damage to the sample. The latter is a crucial advantage for focused electron beam-induced deposition. Finally, the main challenges regarding the applicability of sub-10 nm focused electron beam-induced deposition are discussed.  相似文献   

12.
纳米光刻技术   总被引:10,自引:0,他引:10  
纳米科学技术将成为新世纪信息时代的核心。纳米量级结构作为研究微观量子世界的重要基础之一,其制作技术是整个纳米技术的核心基础,已成为当前世界科学研究急需解决的问题。文章针对上前的科技发展情况,介绍了几种纳米光刻技术的实现新途径、发展现状和关键问题。详细阐述了波前工程、电子束光刻、离子束光刻、X射线光刻原子光刻、干涉光刻、极紫外光刻以及157光刻的原理和实现难点。作为下一代各种光刻技术,它们都有望实现  相似文献   

13.
单明广  郭黎利  钟志 《光子学报》2014,38(11):2880-2884
研究了一种用于并行激光直写的连续深浮雕衍射透镜阵列方法.该方法采用连续浮雕衍射透镜阵列替换传统并行激光直写中的物镜阵列,在兼顾系统分辨力基础上,克服了波带片等衍射透镜阵列衍射效率低的缺点|同时因采用深浮雕结构优化环带宽度,可降低阵列的制作难度.针对并行激光直写系统阵列F/#小的特点,在建立连续深浮雕衍射透镜阵列非旁轴近似聚焦模型基础上,设计、制作和测试了波长为441.6 nm,F/#为7.5的连续深浮雕衍射透镜阵阵列.测试结果表明:该阵列的衍射效率优于70%,远高于波带片阵列的40%.  相似文献   

14.
SPDM: light microscopy with single-molecule resolution at?the?nanoscale   总被引:1,自引:0,他引:1  
Far-field fluorescence techniques based on the precise determination of object positions have the potential to circumvent the optical resolution limit of direct imaging given by diffraction theory. In order to use localization to obtain structural information far below the diffraction limit, the ‘point-like’ components of the structure have to be detected independently, even if their distance is lower than the conventional optical resolution limit. This goal can be achieved by exploiting various photo-physical properties of the fluorescence labeling (‘spectral signatures’). In first experiments, spectral precision distance microscopy/spectral position determination microscopy (SPDM) was limited to a relatively small number of components to be resolved within the observation volume. Recently, the introduction of photoconvertable molecules has dramatically increased the number of components which can be independently localized. Here, we present an extension of the SPDM concept, exploiting the novel spectral signature offered by reversible photobleaching of fluorescent proteins. In combination with spatially modulated illumination (SMI) microscopy, at the present stage, we have achieved an estimated effective optical resolution of approximately 20 nm in the lateral and 50 nm in the axial direction, or about 1/25th–1/10th of the exciting wavelength.  相似文献   

15.
研究了一种用于并行激光直写的连续深浮雕衍射透镜阵列方法.该方法采用连续浮雕衍射透镜阵列替换传统并行激光直写中的物镜阵列,在兼顾系统分辨力基础上,克服了波带片等衍射透镜阵列衍射效率低的缺点;同时因采用深浮雕结构优化环带宽度,可降低阵列的制作难度.针对并行激光直写系统阵列F/#小的特点,在建立连续深浮雕衍射透镜阵列非旁轴近似聚焦模型基础上,设计、制作和测试了波长为441.6 nm,F/#为7.5的连续深浮雕衍射透镜阵阵列.测试结果表明:该阵列的衍射效率优于70%,远高于波带片阵列的40%.  相似文献   

16.

Electron-beam lithography has been used to define color center stripes of about one hundred micrometers length and variable width (100 v nm to 5 v m) in lithium fluoride. These structures have for the first time been illustrated and spectrally characterized in near field optical microscopy (SNOM) operating in local illumination mode with an optical fiber probe and far field fluorescence detection.  相似文献   

17.
高斯  王子涵  滑建冠  李乾坤  李爱武  于颜豪 《物理学报》2017,66(14):147901-147901
蓝宝石具有超强硬度及耐腐蚀、耐高温、在紫外-红外波段具有良好的透光性等优点,在军工业以及医疗器械方面具有广泛的应用前景.然而这些优点又对蓝宝石的机械加工或化学腐蚀加工带来困难.飞秒激光脉冲具有热损伤小、加工分辨率高、材料选择广等特点,被广泛应用于固体材料改性和高精度三维微纳器件加工.本文提出了利用飞秒激光多光子吸收特性在蓝宝石表面实现超越光学衍射极限的精细加工.利用聚焦后的波长为343 nm的飞秒激光,配合高精密三维压电位移台,实现激光焦点和蓝宝石晶体的相对三维移动,在蓝宝石晶体衬底上进行精确扫描,得到了线宽约61 nm的纳米线,纳米线间的最小间距达到142 nm左右.利用等离子体模型解释了加工得到的纳米条纹的产生原因,研究了激光功率、扫描速度对加工分辨率的影响.最终本工作实现了超越光学衍射极限的加工精度,为实现利用飞秒激光对高硬度材料的微纳结构制备提供了参考.  相似文献   

18.
光学光刻是目前超大规模集成电路(VLSI)制备中主要的微米和亚微米的图形加工技术,这一技术将继续保持其主导地位成为90年代VLSI发展的关键。本文综述了近年来光学光刻工艺的发展,主要介绍了G线(436nm)、Ⅰ线(365nm)和准分子激光光刻的现状,并对实现高的光学光刻分辨率所必须解决的透镜设计、套准精度和像场面积等问题作了详细描述。最后展望了发展方向、  相似文献   

19.
Novel X‐ray imaging of structural domains in a ferroelectric epitaxial thin film using diffraction contrast is presented. The full‐field hard X‐ray microscope uses the surface scattering signal, in a reflectivity or diffraction experiment, to spatially resolve the local structure with 70 nm lateral spatial resolution and sub‐nanometer height sensitivity. Sub‐second X‐ray exposures can be used to acquire a 14 µm × 14 µm image with an effective pixel size of 20 nm on the sample. The optical configuration and various engineering considerations that are necessary to achieve optimal imaging resolution and contrast in this type of microscopy are discussed.  相似文献   

20.
了解细胞内分子尺度的动态和结构的特征是生命科学迫切需要解决的问题,要求远场光学成像要求纳米或亚纳米量级的空间分辨率.介绍了一种实现打破衍射极限的远场荧光显微成像技术--随机光重建显微术(STORM),其分辨率可以达到横向分辨率20 nm,轴向分辨率50 nm,理论上这种方法的空间分辨率可以达到单分子定位的精度.具体介绍...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号