首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We study the electrical transport properties of a two-dimensional electron gas (2DEG) with the Rashba spin-orbit interaction in the presence of a constant perpendicular magnetic field (B(0)( ?z) which is weakly modulated by B1 = B1 cos(qx) ?z, where B(1) ? B(0) and q = 2π/a with a the modulation period. We obtain the analytical expressions of the diffusive conductivities for spin-up and spin-down electrons. The conductivities for spin-up and spin-down electrons oscillate with different frequencies and produce beating patterns in the amplitude of the Weiss and Shubnikov-de Haas oscillations. We show that the Rashba strength can be determined by analyzing the beating pattern in the Weiss oscillation. We find a simple equation which determines the Rashba spin-orbit interaction strength if the number of Weiss oscillations between any two successive nodes is known from the experiment. We compare our results with the electrically modulated 2DEG with the Rashba interaction. For completeness, we also study the beating pattern formation in the collisional and the Hall conductivities.  相似文献   

2.
The effect of 1D periodic modulation on the transport and thermodynamic properties of a non-interacting two-dimensional electron gas (2DEG) is investigated. The Hamiltonian used also includes a tilted magnetic field, Rashba, and Dresselhauss spin-orbit interactions. The 1D periodic modulation introduces non-quantized regions on Hall conductivity and a non-zero diffusive conductivity. A method to estimate the modulation periodicity is given using the periodicity of Weiss oscillations on the diffusive conductivity.  相似文献   

3.
We consider a two-dimensional electron gas (2DEG) with the Rashba spin-orbit interaction (SOI) in the presence of a perpendicular magnetic field. We derive analytical expressions of the density of states (DOS) of a 2DEG with the Rashba SOI in the presence of a magnetic field by using the Green's function technique. The DOS allows us to obtain the analytical expressions of the magnetoconductivities for spin-up and spin-down electrons. The conductivities for spin-up and spin-down electrons oscillate with different frequencies and give rise to the beating patterns in the amplitude of the Shubnikov-de Haas (SdH) oscillations. We find a simple equation which determines the zero-field spin splitting energy if the magnetic field corresponding to any beat node is known from the experiment. Our analytical results reproduce well the experimentally observed non-periodic beating patterns, number of oscillations between two successive nodes and the measured zero-field spin splitting energy.  相似文献   

4.
B.K. Pal  B. Basu 《Physics letters. A》2010,374(42):4369-4374
We have studied a quantum dot with Rashba spin-orbit interaction in noncommutative phase space. The energy eigenvalues are analogous to Landau energy levels. It is shown that this system is related with a physically realizable model of a quantum dot with Rashba spin-orbit interaction in a magnetic field whereby a relation is derived among the noncommutative parameters, spin-orbit coupling strength and magnetic field.  相似文献   

5.
Spin splitting of asymmetric quantum wells is theoretically investigated in the absence of any electric field, including the contribution of interface-related Rashba spin-orbit interaction as well as linear and cubic Dresselhaus spin-orbit interaction. The effect of interface asymmetry on three types of spin-orbit interaction is discussed. The results show that interface-related Rashba and linear Dresselhaus spin-orbit interaction can be increased and cubic Dresselhaus spin-orbit interaction can be decreased by well structure design. For wide quantum wells, the cubic Dresselhaus spin-orbit interaction dominates under certain conditions, resulting in decreased spin relaxation time.  相似文献   

6.
研究囚禁在环形势中的Rashba自旋轨道耦合玻色-爱因斯坦凝聚体在六极子磁场中的基态特性。在这种情况下,磁场破坏了自旋轨道耦合哈密顿量的旋转对称性,但系统仍具有2π/3的离散对称性。数值结果发现:在弱相互作用情况下,六极子磁场和Rashba自旋轨道耦合使环形囚禁的凝聚体呈类六边形的基态密度分布,当磁场强度超过某一临界值时,凝聚体将崩塌;在强相互作用情况下,半量子涡旋出现在凝聚体中,且被六极子磁场钉在方位角Ф=nπ/3的径向位置,涡旋的旋转方向取决于径向磁场的方向。  相似文献   

7.
The thermodynamic properties of an In Sb quantum dot have been investigated in the presence of Rashba spin–orbit interaction and a static magnetic field. The energy spectrum and wave-functions for the system are obtained by solving the Schrodinger wave-equation analytically. These energy levels are employed to calculate the specific heat, entropy,magnetization and susceptibility of the quantum dot system using canonical formalism. It is observed that the system is susceptible to maximum heat absorption at a particular value of magnetic field which depends on the Rashba coupling parameter as well as the temperature. The variation of specific heat shows a Schottky-like anomaly in the low temperature limit and rapidly converges to the value of 2kB with the further increase in temperature. The entropy of the quantum dot is found to be inversely proportional to the magnetic field but has a direct variation with temperature. The substantial effect of Rashba spin–orbit interaction on the magnetic properties of quantum dot is observed at low values of magnetic field and temperature.  相似文献   

8.
朱国宝 《中国物理 B》2012,(11):429-433
The spin Hall and spin Nernst effects in graphene are studied based on Green’s function formalism.We calculate intrinsic contributions to spin Hall and spin Nernst conductivities in the Kane-Mele model with various structures.When both intrinsic and Rashba spin-orbit interactions are present,their interplay leads to some characteristics of the dependence of spin Hall and spin Nernst conductivities on the Fermi level.When the Rashba spin-orbit interaction is smaller than intrinsic spin-orbit coupling,a weak kink in the conductance appears.The kink disappears and a divergence appears when the Rashba spin-orbit interaction enhances.When the Rashba spin-orbit interaction approaches and is stronger than intrinsic spin-orbit coupling,the divergence becomes more obvious.  相似文献   

9.
本文基于Lee-Low-Pines幺正变换法,采用Tokuda改进的线性组合算符法研究了Rashba自旋-轨道相互作用效应下量子盘中强耦合磁极化子的性质.结果表明,磁极化子的相互作用能Eint的取值随量子盘横向受限强度ω0、外磁场的回旋频率ωc、电子-LO声子耦合强度α和量子盘厚度L的变化均与磁极化子的状态性质密切相关;磁极化子的平均声子数N随ωc,ω0和α的增加而增大,随L的增加而振荡减小;在Rashba自旋-轨道相互作用效应影响下磁极化子的有效质量将劈裂为m*+,m*-两种,它们随ωc,ω0和α的增加而增大,随L的增加而振荡减小;在研究量子盘中磁极化子问题时,电子-LO声子耦合和Rashba自旋-轨道相互作用效应的影响不可忽略,但Rashba自旋-轨道相互作用和极化子效应对磁极化子的影响只有在电子运动的速率较慢时显著.  相似文献   

10.
We present a theoretical study of the energy levels with two-dimensional ring confining potential in the presence of the Rashba spin-orbit interaction. The features of some low-lying states in various strengths of the Rashba spin-orbit interaction are investigated. The Rashba spin-orbit splitting can a/so be influenced by the width of the potential barrier. The computed results show that the spin-polarized electronic states can be more easily achieved in a weakly confined dot when the confinement strength for the Rashba spin-orbit interaction is larger than a critical value.  相似文献   

11.
We investigate theoretically the spin-polarized transport in one-dimensional waveguide structure with spatially-periodic electronic and magnetic fields. The interplay of the spin-orbit interaction and in-plane magnetic field significantly modifies the spin-dependent transmission and the spin polarization. The in-plane magnetic fields increase the strength of the Rashba spin-orbit coupling effect for the electric fields along y axis and decrease this effect for reversing the electric fields, even counteract the Rashba spin-orbit coupling effect. It is very interesting to find that we may deduce the strength of the Rashba effect through this phenomenon.  相似文献   

12.
方诚  王志刚  李树深  张平 《中国物理 B》2009,18(10):4430-4436
The magnetisation of heavy holes in III--V semiconductor quantum wells with Rashba spin-orbit coupling (SOC) in an external perpendicular magnetic field is studied theoretically. We concentrate on the effects on the magnetisation induced by the system boundary, the Rashba SOC and the temperature. It is found that the sawtooth-like de Haas--van Alphen (dHvA) oscillations of the magnetisation will change dramatically in the presence of such three factors. Especially, the effects of the edge states and Rashba SOC on the magnetisation are more evident when the magnetic field is smaller. The oscillation center will shift when the boundary effect is considered and the Rashba SOC will bring beating patterns to the dHvA oscillations. These effects on the dHvA oscillations are preferably observed at low temperatures. With increasing temperature, the dHvA oscillations turn to be blurred and eventually disappear.  相似文献   

13.
李玉现  李伯臧 《中国物理》2005,14(5):1021-1024
利用传递矩阵方法,我们计算了自旋轨道耦合和磁场对准一维铁磁/半导体/铁磁系统中电子输运性质的影响。计算结果发现,透射系数的振幅随磁场增加而增大。在反铁磁排列时,即使在磁场作用下,上、下自旋电子具有相同的透射系数。与不加磁场时的情况相反,在一定的磁场和耦合强度时,铁磁排列中,上自旋电子的透射系数大于下自旋电子的,而且出现了自旋反转。  相似文献   

14.
We demonstrate that an equilibrium spin current in a 2D electron gas with Rashba spin-orbit interaction (Rashba medium) results in a mechanical torque on a substrate near an edge of the medium. If the substrate is a cantilever, the mechanical torque displaces the free end of the cantilever. The effect can be enhanced and tuned by a magnetic field. Observation of this displacement would be an effective method to prove the existence of equilibrium spin currents. The analysis of edges of the Rashba medium demonstrates the existence of localized edge states. They form a 1D continuum of states. This suggests a new type of quantum wire: spin-orbit quantum wire.  相似文献   

15.
HgTe/HgCdTe量子阱中巨大电子Rashba自旋分裂   总被引:2,自引:0,他引:2       下载免费PDF全文
主要研究具有倒置能带结构的n-HgTe/HgCdTe第三类量子阱Shubnikov-de Haas(SdH)振荡中的拍频现象.发现在量子阱中电子存在强烈的Rashba自旋分裂,通过对SdH振荡进行三种不同方法的分析:SdH振荡对1/B关系的快速傅里叶变换、SdH振荡中拍频节点分析和对SdH振荡拍频数值拟合,得到了完全一致的电子Rashba自旋分裂能量(28—36 meV). 关键词: n-HgTe/HgCdTe Shubnikov-de Haas振荡 Rashba自旋分裂  相似文献   

16.
We investigate the magnetocapacitance of the two-dimensional electron gas (2DEG) embedded in diluted magnetic semiconductors in the presence of Rashba spin–orbit interaction (SOI). We present calculations on the energy spectrum and density of states and show that the tunable spin–orbit coupling and the enhanced Zeeman splitting have a strong effect on the magnetocapacitance of the structure. In the presence of Rashba SOI, a typical beating pattern with well defined node-positions in the oscillating capacitance is observed. A simple relation that predicts the positions of nodes in the beating patterns is obtained. The interplay between the total Zeeman splitting (including the s–d exchange interaction) and the Rashba SOI is discussed.  相似文献   

17.
A study on characteristics of electrons tunneling through semiconductor barrier is evaluated, in which we take into account the effects of Rashba spin-orbit interaction. Our numerical results show that Rashba spin-orbit effect originating from the inversion asymmetry can give rise to the spin polarization. The spin polarization does not increase linearly but shows obvious resonant features as the strength of Rashba spin-orbit coupling increases, and the amplitudes of spin polarization can reach the highest around the first resonant energy level. Furthermore, it is found that electrons with different spin orientations will spend quite different time through the same heterostructures. The difference of the dwell time between spin-up and spin-down electrons arise from the Rashba spin-orbit coupling. And it is also found that the dwell time will reach its maximum at the first resonant energy level. It can be concluded that, in the time domain, the tunneling processes of the spin-up and spin-down electrons can be separated by modulating the strength of Rashba spin-orbit coupling. Study results indicate that Rashba spin-orbit effect can cause a nature spin filter mechanism in the time domain.  相似文献   

18.
We theoretically investigate the electron transport properties in a non-magnetic heterostructure with both Dresselhaus and Rashba spin-orbit interactions. The detailed-numerical results show that (1) the large spin polarization can be achieved due to Dresselhaus and Rashba spin-orbit couplings induced splitting of the resonant level, although the magnetic field is zero in such a structure, (2) the Rashba spin-orbit coupling plays a greater role on the spin polarization than the Dresselhaus spin-orbit interaction does, and (3) the transmission probability and the spin polarization both periodically change with the increase of the well width.  相似文献   

19.
We investigate the magnetocapacitance of the two-dimensional electron gas (2DEG) embedded in diluted magnetic semiconductors in the presence of Rashba spin–orbit interaction (SOI). We present calculations on the energy spectrum and density of states and show that the tunable spin–orbit coupling and the enhanced Zeeman splitting have a strong effect on the magnetocapacitance of the structure. In the presence of Rashba SOI, a typical beating pattern with well defined node-positions in the oscillating capacitance is observed. A simple relation that predicts the positions of nodes in the beating patterns is obtained. The interplay between the total Zeeman splitting (including the s–d exchange interaction) and the Rashba SOI is discussed.  相似文献   

20.
Using ensemble Monte Carlo simulation, we have studied hot carrier spin dynamics and spin noise in a multi-subband GaAs quantum wire in the presence of a randomly varying Rashba spin-orbit interaction. The random variation reduces the carrier ensemble's spin dephasing time due to the D'yakonov-Perel' mechanism, but otherwise makes no qualitative difference to the temporal spin relaxation characteristics. However, it makes a qualitative difference to the spatial spin relaxation characteristics which change from monotonic and smooth to non-monotonic and chaotic because of a complex interplay between carriers in different subbands. As far as spin fluctuation and spin noise are concerned, the random variation has no major effect except that the low-frequency noise power spectral density increases slightly when the magnitude of the Rashba spin-orbit interaction field is varied randomly while holding the direction constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号