首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
合成Z=119,120超重核是当今各核物理实验室争相追逐的目标,理论预言可靠的弹靶组合、入射能等信息有助于超重核合成的实验设计和探测。本工作基于双核模型研究影响重离子核反应生成截面大小的反应机制,计算了$^{50}{\rm{Ti}}$+$^{249}{\rm{Bk}}$$^{50}{\rm{Ti}}$+$^{249}{\rm{Cf}}$两个弹靶组合,预测$^{50}{\rm{Ti}}$+$^{249}{\rm{Bk}}$的生成截面为0.021 1 pb。考虑双核系统熔合与存活两个过程,重点关注$^{52-59}{\rm{Cr}}$+$^{243}{\rm{Am}}$$^{54-62}{\rm{Mn}}$+$^{243}{\rm{Am}}$$^{56-72}{\rm{Ni}}$+$^{238}{\rm{U}}$生成截面的同位素链依赖性,研究表明熔合几率随弹核质量数呈现强烈的依赖行为,直接影响蒸发剩余截面大小。  相似文献   

2.
锕系核的转动性质对于揭示$A \approx 250 $质量区原子核的顺排机制、对关联性质、能级结构等十分重要,研究这些核的高自旋结构一方面可以对现有的理论模型进行检验,另一方面有助于深入认识超重核。本工作采用基于推转壳模型的粒子数守恒方法研究了实验上观测到的$^{235}{\rm{Np}}$$^{237}{\rm{Np}}$中转动带的性质,计算得到的转动惯量、角动量顺排等与实验符合。首先,通过描述转动谱的$ab$公式确定了$^{235}{\rm{Np}}$中观测到的转动带的带头自旋。随后,通过对比理论与实验上的转动惯量,确定了其组态为$\pi 5/2^-[523]$。此外,也讨论了高阶形变$\varepsilon_6^{}$对中子$j_{15/2}^{}$顺排的作用,探索了在计算中出现而在实验上未观测到中子$j_{15/2}^{}$顺排的原因,从而解释了$^{235, 237}{\rm{Np}}$的转动带中产生上弯的机制。最后,还讨论了$^{237}{\rm{Np}}$的转动带$\pi 5/2^-[523]$中出现旋称劈裂的原因,发现可能是由于这个转动带的两个旋称分支上弯以后高阶形变$\varepsilon_6^{}$不同所导致的。  相似文献   

3.
柳卫平  李志宏  何建军  唐晓东  连钢  郭冰  苏俊  李云居  崔保群  孙良亭  武启  安竹  谌阳平  陈治钧  杜先超  符长波  甘林  贺国珠  AlexanderHeger  侯素青  黄翰雄  黄宁  江历阳  ShigeruKubono  李荐民  李阔昂  李涛  MariaLugaro  罗小兵  马少波  韩治宇  李鑫悦  马田丽  梅东明  南威克  南巍  陈晨  张昊  张龙  曹富强  钱永忠  秦久昌  任杰  谭万鹏  IsaoTanihata  王鹏  王硕  王友宝  许世伟  颜胜权  曾志  于祥庆  岳骞  曾晟  张环宇  张辉  杨丽桃  张立勇  张宁涛  张奇玮  张涛  方晓  张笑鹏  张雪珍  陈云华  祁宁春  吴世勇  郭绪元  周济芳  何胜明  宁金华  岳剑锋 《原子核物理评论》2020,37(3):283-290
锦屏深地核天体物理(JUNA)实验项目将利用中国锦屏深地实验室(CJPL)的良好条件,在天体物理伽莫夫能量窗口开展核天体关键反应$^{25}{\rm{Mg}}({\rm{p}},{\rm{\gamma}})^{26}{\rm{Al}}$$^{19}{\rm{F}}({\rm{p}},\alpha)^{16}{\rm{O}}$$^{13}{\rm{C}}(\alpha, {\rm{n}})^{16}{\rm{O}}$$^{12}{\rm{C}}(\alpha,{\rm{\gamma}})^{16}{\rm{O}}$的直接测量,为理解恒星演化和元素起源提供新的数据。目前,已经在地面上对加速器装置、束流稳定性、靶、探测器以及电子学进行了系统的测试。地面实验内容包括高纯锗探测器效率刻度,$^{25}{\rm{Mg}}({\rm{p}}, {\rm{\gamma}})^{26}{\rm{Al}}$在304 keV的共振强度测量,$^{19}{\rm{F}}({\rm{p}}, \alpha)^{16}{\rm{O}}$的截面测量,聚乙烯作为慢化体的中子探测器的设计、加工和效率刻度,靶的设计和稳定性检测等。JUNA项目整体进展顺利,地面实验已取得一系列关键进展和初步成果。在不远的将来,JUNA项目将有序开展地下实验,完成设定目标,也将促进更广泛的国际合作,助力于天体演化中的若干重大科学问题的解决。  相似文献   

4.
中子星物质主要是由高密度非对称核物质组成。目前通过地面重离子碰撞等实验来认识高密度非对称核物质的物态还存在很大的不确定性。随着对中子星天文观测精度的提高以及可观测量的增多,基于对中子星的天文观测来反向约束高密度非对称核物质物态成为了可能。从理论上去探讨中子星的可观测量与不同密度段物态方程的关联程度,将有助于上述反向对中子星物质物态的研究。本文利用分段式多方物态方程,通过对中子星的半径(R)、潮汐形变参数($\varLambda$)、转动惯量(I)等可观测量的计算分析,给出了这些观测量与物态方程各密度段的关联度。结果表明,质量为1.4$ M_{\odot}$的典型中子星潮汐形变参数($\varLambda$)和f-模频率($\nu$)主要与$ 0.5\rho_{\rm{sat}} \sim 1.5\rho_{\rm{sat}}$$ 2.5\rho_{\rm{sat}} \sim 3.5\rho_{\rm{sat}}$$3.5\rho_{\rm{sat}} \sim $$ 4.5\rho_{\rm{sat}}$ 三个密度段物态方程有较强关联;中子星半径(R)主要与$ 1.5\rho_{\rm{sat}} \sim 3.5\rho_{\rm{sat}}$及壳层物态有较强关联;转动惯量(I)与$ 4.5\rho_{\rm{sat}}$以下各密度段均有一定关联。  相似文献   

5.
原子核谱因子表征原子核单粒子轨道的性质以及占据数等信息,是联系核结构、核反应与核天体物理的重要物理量。 对于原子核谱因子的计算强烈依赖于理论模型得到的原子核多体波函数,在实际计算中通常选用普通壳模型。随着计算机性能的提高以及核多体方法的发展,第一性原理方法被应用于研究原子核性质,并取得巨大成功。 本工作基于现实两体相互作用,利用第一性原理无核芯壳模型计算较轻原子核谱因子。首先,计算了$A =6$$7$原子核的低激发态能量,考察第一性原理无核芯壳模型对能量计算的收敛性,并比较普通壳模型与第一性原理无核芯壳模型对于$A =6$$7$能谱的描述。结果表明,无核芯壳模型计算结果与实验符合较好,可以很好地描述结合能和激发谱性质。 然后,利用无核芯壳模型系统计算了$^{7}{\rm{Li}}$$^7{\rm{Be}}$镜像核叠积函数与谱因子,并分析谱因子计算的收敛性。结果显示,谱因子随着模型空间的增大收敛较慢,对于$^{7}{\rm{Li}} $,无核芯壳模型计算的谱因子同最新实验值符合得很好。最后,采用无核芯壳模型系统计算$A =6,\, 7$$8$原子核低激发谱能量与谱因子,为核反应与核天体研究提供必要的输入量。  相似文献   

6.
研究了3$M_{\odot}$AGB星中26Al核合成的网络计算和核反应率的灵敏度分析。结合最新的核反应率数据,建立了一个从碳到硅完整的核反应网络,计算了26Al的丰度。结果表明,26Al首先在AGB星中有效合成,随着核反应的进行,然后被一系列的核反应消耗。MgAl循环出现在26Al的网络中。我们将核反应网络中的主要核反应分为三类:(n, ${\rm{\gamma }}$),(p,${\rm{\gamma }}$)和($\alpha$, ${\rm{\gamma }}$),并对核反应率的灵敏度进行了详细的分析。已经确定了每一类中最有影响的核反应,它们是25Mg(n, ${\rm{\gamma }}$)26Mg,25Mg(p, ${\rm{\gamma }}$)26Al,26Mg(p, ${\rm{\gamma }}$)27Al,21Ne(p, ${\rm{\gamma }}$)22Na,18O($\alpha$, ${\rm{\gamma }}$)22Ne和22Ne($\alpha$,${\rm{\gamma }}$)26Mg。在目前网络所涉及的所有核反应中,25Mg(p, ${\rm{\gamma }}$)26Al是对26Al的产量有最大的影响,它值得核实验物理学家的关注。  相似文献   

7.
本工作研究了双重味重子的理想混合角。理想混合角是将$^{2S+1}(l_\lambda)_J$态转换为具有确定重夸克对称性的态时所对应的旋转角度。在标准的$\rho-\lambda$图像下,求得了$L_\rho=0$情形时重夸克对称性的态$\left(J, j_\ell\right)$$\left(J, s_{\rm q}+j_\rho\right)= $$ \left(J, \{^4l_\lambda/^2l_\lambda\}\right)$态之间的理想混合角,其中${\boldsymbol{j}}_\ell={\boldsymbol{l}}_\lambda+{\boldsymbol{s}}_{\rm q}$, ${\boldsymbol{s}}_\rho={\boldsymbol{s}}_{\rm Q1}+{\boldsymbol{s}}_{\rm Q2}$${\boldsymbol{j}}_\rho={\boldsymbol{s}}_\rho+{\boldsymbol{L}}_\rho$。本工作指出当研究双重味重子的衰变性质时,需要采用$(1S1p)1/2^-$$(1S1p)3/2^-$等理想混合态。  相似文献   

8.
从Skyrme有效核子-核子相互作用出发,得到了单核子平均场、介质中的核子-核子散射截面以及核子的初始化密度分布,自洽地用于 Boltzmann-Uehling-Uhlenbeck(BUU) 输运模型中。使用对应不同软硬程度对称能、相反中子-质子有效质量劈裂的六组Skyrme参数(SkI2, Gs, KDE0v1, NRAPR, BSk9和SV-mas08),利用BUU输运模型对$^{124}{\rm{Sn}}$+$^{124}{\rm{Sn}}$$^{112}{\rm{Sn}}$+$^{112}{\rm{Sn}}$进行了碰撞模拟。结果表明,由中子-质子有效质量劈裂效应引起的自由双中质比差异在较高的核子动能下明显。此外,与NSCL实验数据的比较表明,在用到的六种相互作用之中,KDE0v1相互作用所对应的双中质比结果似乎与实验更为符合。  相似文献   

9.
在改进的量子分子动力学(ImQMD)模型框架下,研究了$^{136}{\rm{Xe}}$+$^{198}{\rm{Pt}}$体系的多核子转移反应过程。给出了不同弹靶接触时间下二分裂碎片的总动能-质量分布,发现准弹性碰撞、深度非弹性碰撞和准裂变反应事件可以采用弹靶接触时间进行粗略的划分。分析了不同弹靶接触时间下类靶碎片的双微分截面分布以及Ba同位素的产生截面分布,结果表明丰中子核素产生于深度非弹性碰撞。另外研究发现,对于$^{136}{\rm{Xe}}$+$^{198}{\rm{Pt}}$体系,出射角在0°附近的类靶碎片产生于中心碰撞。  相似文献   

10.
${\mathbb{Z}}_3$-QCD是具有严格中心对称性的类QCD理论,研究其在特殊条件下的性质有助于理解QCD退禁闭相变。本文应用三种味道的Polyakov-loop拓展的夸克介子模型作为${\mathbb{Z}}_3$-QCD的低能有效理论,研究了不同中心对称性破缺模式下的Roberge-Weiss(RW)相变。为保证RW周期性,本文采用味道依赖的虚化学势$(\mu_{\rm{u}},\mu_{\rm{d}},\mu_{\rm{s}})={\rm{i}}T(\theta-2C\pi/3,\theta,\theta+2C\pi/3)$,其中${\mathbb{Z}}_3$-QCD是具有严格中心对称性的类QCD理论,研究其在特殊条件下的性质有助于理解QCD退禁闭相变。本文应用三种味道的Polyakov-loop拓展的夸克介子模型作为${\mathbb{Z}}_3$-QCD的低能有效理论,研究了不同中心对称性破缺模式下的Roberge-Weiss(RW)相变。为保证RW周期性,本文采用味道依赖的虚化学势$(\mu_{\rm{u}},\mu_{\rm{d}},\mu_{\rm{s}})={\rm{i}}T(\theta-2C\pi/3,\theta,\theta+2C\pi/3)$,其中$0\!\leqslant\!{C}\!\leqslant1$。传统的和夸克反馈效应改进的两种不同Polyakov-loop势被分别用于相应的计算。研究表明,当$N_{\rm{f}}\!=\!3$,$C\!\ne\!1$时,RW相变出现在$\theta=\pi/3$(mod $2\pi/3$)处,其强度随$C$值的减小而加强;当$C\!=\!1$,$N_{\rm{f}}\!=\!2\!+\!1$时,RW相变位置出现反常,变为$\theta=2\pi/3$(mod $2\pi/3$);而当$C\!=\!1$,$N_{\rm{f}}\!=\!1\!+\!2$时,RW相变点又返回$\theta\!=\!\pi/3$(mod $2\pi/3$)。上述几种情形的RW相变端点均为三相点。研究发现,夸克反馈效应使得RW相变强度减弱,退禁闭相变温度变低,但并未改变前述的定性结论。  相似文献   

11.
近期,在101In、123,125Ag和218Pa等核中,首次观测到同核异能态。本工作通过原子核壳模型解释In、Ag同位素和$N\!=\!127$同中素中的这些同核异能态及相关的同核异能态背后的物理原因。101-109In这五个奇A核In同位素中,观测到的$1/2^{-}$同核异能态的激发能非常接近。这可以通过引入中子近期,在101In、123,125Ag和218Pa等核中,首次观测到同核异能态。本工作通过原子核壳模型解释In、Ag同位素和$N\!=\!127$同中素中的这些同核异能态及相关的同核异能态背后的物理原因。101-109In这五个奇A核In同位素中,观测到的$1/2^{-}$同核异能态的激发能非常接近。这可以通过引入中子$0g_{7/2}$$1d_{5/2}$轨道间的很强的组态混合来解释。更进一步分析表明,这些奇A核In同位素中,从$9/2^{+}$基态到$1/2^{-}$同核异能态,一个质子从$1p_{1/2}$轨道激发到$0g_{9/2}$轨道。这一质子组态变化可能引发中子$0g_{7/2}$$1d_{5/2}$轨道的单粒子能变化。这样一个原子核内的组态依赖的壳演化被称为第二类壳演化。与In同位素类似,123,125Ag的同核异能态被发现是$1/2^{-}$态,对应着一个质子空穴在$1p_{1/2}$轨道。但之前观测到的115,117Ag的$1/2^{-}$态是基态。这意味着质子$1p_{1/2}$轨道和$0g_{9/2}$轨道在$N\!=\!72$附近发生了反转。壳模型分析表明张量力是造成这两个轨道反转的决定性原因。之前观测到的奇奇核$N\!=\!127$同中素210Bi、212At、214Fr和216Ac中,基态是$1^{-}$态,同时存在高自旋的同核异能态。然而,基于$\alpha$衰变性质和壳模型计算,推荐218Pa中的基态和新发现的同核异能态分别为$8^{-}$态和$1^{-}$态。奇奇核$N\!=\!127$同中素基态和同核异能态的演化是由质子中子相互作用从粒子粒子形式转化为空穴粒子形式以及质子组态混合所导致。总的来说,壳模型对这些双幻核100Sn、132Sn和208Pb附近核中新发现的同核异能态有较好的描述。双幻核附近核中的同核异能态,也称为壳模型同核异能态,是核结构研究中非常重要的。因为这些同核异能态常常提供了中重质量区域极端丰中子和缺中子原子核中的第一个谱学性质,并包含了丰富的物理信息,比如质子中子相互作用及其在壳演化中的作用。  相似文献   

12.
应用线性Regge轨迹和相对论夸克模型,研究了低激发态单重介子谱,并解释了这些激发态的窄质量劈裂源自轻夸克的相对论效应.计算了自旋宇称为J+(J=0,1,2)的单重介子(D,Ds,B,Bs)P波的质量,并建议存在O+态的,未被实验发现的B介子和Bs介子,其质量分别为5659 MeV和5788 MeV.计算表明,Ds0(...  相似文献   

13.
高能质子-质子(p-p)和质子-原子核(p-A)碰撞过程中产生的D介子是分析碰撞后生成的饱和胶子性质的重要途经。考虑领头阶下的强耦合效应,在色玻璃凝聚理论(CGC)框架下研究了LHC(Large Hadron Collider, LHC)能量下p-p(p-A)碰撞过程中的D介子产生。采用由KLR-AdS/CFT色偶极模型通过傅里叶变换得到的偶极关联因子,同时利用Glauber模型考虑冷核物质效应,计算了质心能量为5.02 TeV时质子-铅核(p-Pb)碰撞中不同碰撞中心度下D介子的产生截面,并在此基础上研究了p-Pb碰撞中D介子产生及其半轻子衰变过程中的核修正因子。通过与大型强子对撞机(LHC)实验结果比较发现:考虑强耦合效应后的理论结果与ALICE和LHCb合作组的最新实验数据符合得更好。最后,本文对LHC碰撞质心能量为8.16 TeV时p-Pb碰撞中D介子产生的核修正因子给出了理论预言, 结果显示此能量下核修正因子理论值比5.02 TeV时略大。  相似文献   

14.
基于考虑了粒子发射的随机Langevin模型,计算了重裂变核240Am在 鞍点后发射的中子、质子和$ \alpha $粒子多重性作为鞍点后摩擦强度($ \beta $)的函数。结果表明在高激发能($ E^* $)和高角动量($ \ell $)条件下,这些轻粒子发射对摩擦的敏感性变强。进而,比较了在(高$ E^* $,低$ \ell $)和(低$ E^* $,高$ \ell $)这两个不同初始条件下,240Am核在鞍点后蒸发的粒子随$ \beta $的演化。发现前者不但能增强核摩擦对粒子发射的影响,也显著提高了带电粒子对$ \beta $的敏感性。在实验方面,我们建议可以用中能重离子碰撞的方式产生高激发的重裂变系统,来更精确地用粒子发射(尤其是轻带电粒子)来探测鞍点后的摩擦强度。  相似文献   

15.
原子核低激发谱对深入理解原子核结构具有重要作用。采用多任务反向传播(Back Propagation,BP)的神经网络方法系统研究了原子核$ {2}_{1}^{+} $$ {4}_{1}^{+} $的激发能量。除了质子数和中子数外,通过在网络输入层增加一个有关原子核集体性的物理量,BP神经网络在0.1 MeV到数MeV的能量范围内很好地拟合了原子核的低激发能。相比五维集体哈密顿量(Five-Dimensional Collective Hamiltonian,5DCH)方法,BP神经网络更好地再现了原子核低激发能的同位素趋势,以及由壳效应导致的幻数原子核低激发能的突然增大,并且将$ {2}_{1}^{+} $$ {4}_{1}^{+} $激发能的预言精度分别提高了约80%和75%,该预言精度与单任务神经网络基本一致,但是改进了对轻核区与缺中子核区低激发谱的学习能力,这说明多任务神经网络可以实现多种激发能量的统一精确计算。  相似文献   

16.
利用放射性束68Fe轰击液氢靶引起的敲出反应,研究了极端丰中子核63,65,67Mn的激发态,指认了它们的自旋宇称,建立了这三个原子核的能级纲图。纲图包含11/2–、9/2–和 7/2– 三个激发态以及$5/2_{\rm{g.s.}}^{-}$基态,它们由三条$\Delta I \!=\! 1$$\gamma$跃迁连接。这种能级结构与$K \!=\! 5/2$时强耦合转动带的特征一致。使用改进的LNPS有效相互作用(LNPSm)的大规模壳模型计算能很好地重现观测到的能级。计算表明,65,67Mn的低位激发态都主要包含处于$4p{\text -}4h$的中子组态和$1p{\text -}1h$的质子组态。基于实验结果发现,在吸积中子星壳中,与质量数$A \!=\! 63$相关的Urca中微子冷却效果比预期的要强很多,而$A \!=\! 65, 67$的冷却效果比预期的更弱。  相似文献   

17.
在偶-偶核基态中寻找稳定的三轴形状, 其中最大三轴形变为$ \left| \gamma \right| $≈30°,仍然是核结构的一个主要主题。 在本工作中,使用推转Woods-Saxon(WS)壳模型来研究Os-Pt区基态和集体转动态中可能的三轴形状。为寻找核态可能存在的三轴形变,具体用对力-形变-转动频率自洽推转壳模型对偶-偶176-202Os和182-204Pt同位素进行了总Routhian面计算。计算是在四极形变($\;{\beta _2} $, $ \gamma $)网格中进行的,而十六极形变$\;{\beta _4} $可变。事实上,在四极形变($\;{\beta _2} $, $\gamma $)的每个网格点上,计算的能量相对于十六极形变$\; {\beta _4} $最小化。发现某些核的基态譬如196Os和188-194Pt既非扁椭球亦非长椭球, 而是在这些核中基态极小值是形状非轴对称的,即三轴形变。同时, 我们把从实验数据提取出的转动惯量与我们的计算结果作比较, 显示实验数据不能很好地与转动假定相一致,说明有振动行为。此外,我们使用一种辅助的方法提取了平衡$\gamma _{0} $值,该值支持我们的预言。  相似文献   

18.
通过分析光子诱发52,50Cr核反应的各类实验数据,澄清52Cr光子吸收截面评价数据与中子、质子出射截面测量值间的分歧,给出了52Cr中子出射截面实验数据的修正;选取EGLO模型光子强度函数,结合准氘模型,给出光子吸收截面。在此基础上,采用最新研制的光子与中重核反应计算程序MEND-G,通过优化理论模型参数,包括剩余核的能级密度和对能修正参数,给出光子能量在200 MeV范围内的n、p、${{\rm{\alpha }}}$等粒子出射核反应的截面,52,50Cr的计算结果在30 MeV以下能区很好地符合了现有实验数据,并按国际标准ENDF/B-6库格式给出了50,52,53,54Cr的全套数据文档,便于核工程用户使用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号